Расчетное сопротивление стали 09г2с для труб. Сравнение с другой маркой стали

Описание стали 09Г2С: Чаще всего прокат из данной марки стали используется для разнообразных строительных конструкций благодаря высокой механической прочности, что позволяет использовать более тонкие элементы чем при использовании других сталей. Устойчивость свойств в широком температурном диапазоне позволяет применять детали из этой марки в диапазоне температур от -70 до +450 С. Также легкая свариваемость позволяет изготавливать из листового проката этой марки сложные конструкции для химической, нефтяной, строительной, судостроительной и других отраслей. Применяя закалку и отпуск изготавливают качественную трубопроводную арматуру. Высокая механическая устойчивость к низким температурам также позволяет с успехом применять трубы из 09Г2С на севере страны.

Также марка широко используется для сварных конструкций. Сварка может производиться как без подогрева, так и с предварительным подогревом до 100-120 С. Так как углерода в стали мало, то сварка ее довольно проста, причем сталь не закаливается и не перегревается в процессе сварки, благодаря чему не происходит снижение пластических свойств или увеличение ее зернистости. К плюсам применения этой стали можно отнести также, что она не склонна к отпускной хрупкости и ее вязкость не снижается после отпуска. Вышеприведенными свойствами объясняется удобство использования 09Г2С от других сталей с большим содержанием углерода или присадок, которые хуже варятся и меняют свойства после термообработки. Для сварки 09Г2С можно применять любые электроды, предназначенные для низколегированных и малоуглеродистых сталей, например Э42А и Э50А. Если свариваются листы толщиной до 40 мм, то сварка производится без разделки кромок. При использовании многослойной сварки применяют каскадную сварку с током силой 40-50 Ампер на 1 мм электрода, чтобы предотвратить перегрев места сварки. После сварки рекомендуется прогреть изделие до 650 С, далее продержать при этой же температуре 1 час на каждые 25 мм толщины проката, после чего изделие охлаждают на воздухе или в горячей воде - благодаря этому в сваренном изделии повышается твердость шва и устраняются зоны напряженности.

Свойства стали 09Г2С: с таль 09Г2 после обработки на двухфазную структуру имеет повышенный предел выносливости; одновременно примерно в 3—3,5 раза увеличивается число циклов до разрушения в области малоцикловой усталости.

Упрочнение ДФМС(дфухфазные ферритно-мартенситные стали) создают участки мартенсита: каждый 1 % мартенситной составляющей в структуре повышает временное сопротивление разрыву примерно на 10 МПа независимо от прочности и геометрии мартенситной фазы. Разобщенность мелких участков мартенсита и высокая пластичность феррита значительно облегчают начальную пластическую деформацию. Характерный признак ферритно-мартенситных сталей — отсутствие на диаграмме растяжения плошадки текучести. При одинаковом значении общего (δ общ) и равномерного (δ р) удлинения ДФМС обладают большей прочностью и более низким отношением σ 0,2 /σ в (0,4—0,6), чем обычные низколегированные стали. При этом сопротивление малым пластическим деформациям (σ 0,2) у ДФМС ниже, чем у сталей с ферритно-перлитной структурой.

При всех уровнях прочности все показатели технологической пластичности ДФМС (σ 0,2 /σ в, δ р, δ общ, вытяжка по Эриксену, прогиб, высота стаканчика и т. д.), кроме раздачи отверстия, превосходят аналогичные показатели обычных сталей.

Повышенная технологическая пластичность ДФМС позволяет применять их для листовой штамповки деталей достаточно сложной конфигурации, что является преимуществом этих сталей перед другими высокопрочными сталями.

Сопротивление коррозии ДФМС находится на уровне сопротивления коррозии сталей для глубокой вытяжки.

ДФМС удовлетворительно свариваются методом точечной сварки. Предел выносливости при знакопеременном изгибе составляет для сварного шва и основного металла (σ в = 550 МПа) соответственно 317 и 350 МПа, т. е. 50 и 60 % о в основного металла.

В случае применения ДФМС для деталей массивных сечений, когда необходимо обеспечить достаточную прокаливаемость, целесообразно использовать составы с повышенным содержанием марганца или с добавками хрома, бора и т. д.

Экономическая эффективность применения ДФМС, которые дороже низкоуглеродистых сталей, определяется экономией массы деталей (на 20—25%). Применение ДФМС в некоторых случаях позволяет исключить упрочняющую термическую обработку деталей, например высокопрочных крепежный изделий, получаемых методом холодной высадки.

Обозначения, принятые в табл. 50*:

а) фасонный прокат толщиной до 11 мм, а при согласовании с изготовителем – до 20 мм; листовой – всех толщин;

б) требование по ограничению углеродного эквивалента по для толщин свыше 20 мм;

в) требование по ограничению углеродного эквивалента по для всех толщин;

г) для района II 4 , для неотапливаемых зданий и конструкций, эксплуатируемых при температуре наружного воздуха, применять прокат толщиной не более 10 мм;

д) при толщине проката не более 11 мм допускается применять сталь категории 3;

е) кроме опор ВЛ, ОРУ и КС;

ж) прокат толщиной до 10 мм и с учетом требований разд. 10;

и) кроме района II 4 для неотапливаемых зданий и конструкций, эксплуатируемых при температуре наружного воздуха.

Знак "+" означает, что данную сталь следует применять; знак "– " означает, что данную сталь в указанном климатическом районе применять не следует.

Примечания: 1. Требования настоящей таблицы не распространяются на стальные конструкции специальных сооружений: магистральные и технологические трубопроводы, резервуары специального назначения, кожухи доменных печей и воздухонагревателей и т. п. Стали для этих конструкций устанавливаются соответствующими СНиП или другими нормативными документами.

2. Требования настоящей таблицы распространяются на листовой прокат толщиной от 2 мм и фасонный прокат толщиной от 4 мм по , сортовой прокат (круг, квадрат, полоса) по ТУ 14-1-3023– 80, ГОСТ 380– 71** (с 1990 г. ГОСТ 535– 88) и ГОСТ 19281– 73*. Указанные категории стали относятся к прокату толщиной не менее 5 мм. При толщине менее 5 мм приведенные в таблице стали применяются без требований по ударной вязкости.

Для конструкций все групп, кроме группы 1 и опор ВЛ и ОРУ, во всех климатических районах, кроме I 1 , допускается применять прокат толщиной менее 5 мм из стали С235 по .

3. Климатические районы строительства устанавливаются в соответствии с "Климат СССР. Районирование и статистические параметры климатических факторов для технических целей". Указанные в головке таблицы в скобках расчетные температуры соответствуют температуре наружного воздуха соответствующего района, за которую принимается средняя температура наиболее холодной пятидневки согласно указаниям СНиП по строительной климатологии и геофизике.

4. К конструкциям, подвергающимся непосредственному воздействию динамических, вибрационных или подвижных нагрузок, относятся конструкции либо их элементы, подлежащие расчету на выносливость или рассчитываемые с учетом коэффициентов динамичности.

5. При соответствующем технико-экономическом обосновании стали С345, С375, С440, С590, С590К, 16Г2АФ могут заказываться как стали повышенной коррозионной стойкости (с медью) – С345Д, С375Д, С440Д, С590Д, С590КД, 16Г2АФД.

6. Применение термоупрочненного с прокатного нагрева фасонного проката из стали С345Т и С375Т, поставляемого по как сталь С345 и С375, не допускается в конструкциях, которые при изготовлении подвергаются металлизации или пластическим деформациям при температуре выше 700° С.

7. Бесшовные горячедеформированные трубы по ГОСТ 8731– 87 допускается применять только для элементов специальных опор больших переходов линий электропередачи высотой более 60 м, для антенных сооружений связи и других специальных сооружений, при этом следует применять марки стали:

во всех климатических районах, кроме I 1 , I 2 , II 2 и II 3 , марку 20 по ГОСТ 8731– 87, но с дополнительным требованием по ударной вязкости при температуре минус 20° С не менее 30 Дж/см 2 (3кгс× м/см 2);

в климатических районах I 2 , II 2 и II 3 – марку 09Г2С по ГОСТ 8731– 87, но с дополнительным требованием по ударной вязкости при температуре минус 40° С не менее 40 Дж/см 2 (4 кгс× м/см 2) при толщине стенки до 9 мм и 35 Дж/см 2 (3,5 кгс× м/см 2) при толщине стенки 10 мм и более.

Не допускается применять бесшовные горячедеформированные трубы, изготовленные из слитков, имеющих маркировку с литером "Л", не прошедшие контроль неразрушающими методами.

8. К сортовому прокату (круг, квадрат, полоса) по ТУ 14-1-3023– 80, ГОСТ 380– 71* (с 1990 г. ГОСТ 535– 88) и ГОСТ 19281– 73* предъявляются такие же требования, как к фасонному прокату такой же толщины по . Соответствие марок сталей по ТУ 14-1-3023– 80, ГОСТ 380– 71*, ГОСТ 19281– 73* и * сталям по следует определять по табл. 51,б.

Наименование характеристики механических свойств стали 09г2с.
σ0.2
СЕЧЕНИЕ
мм
условный предел текучести сталь 09г2с равен
Н/мм2
- - - -


ГОСТ 5520-79.
до 5 345 - - - -
условный предел текучести сталь 09г2с.
В горячекатанном или термически обработанном состоянии.
ГОСТ 5520-79.
от 5 до 10 345 - - - -
условный предел текучести сталь 09г2с.
В горячекатанном или термически обработанном состоянии.
ГОСТ 5520-79.
от 10 до 20 325 - - - -
условный предел текучести сталь 09г2с.
В горячекатанном или термически обработанном состоянии.
ГОСТ 5520-79.
свыше 20 до 32 305 - - - -
условный предел текучести сталь 09г2с.
В горячекатанном или термически обработанном состоянии.
ГОСТ 5520-79.
свыше 32 до 60 285 - - - -
условный предел текучести сталь 09г2с.
В горячекатанном или термически обработанном состоянии.
ГОСТ 5520-79.
свыше 60 до 80 275 - - - -
условный предел текучести сталь 09г2с.
В горячекатанном или термически обработанном состоянии.
ГОСТ 5520-79.
свыше 80 до 160 265 - - - -
условный предел текучести сталь 09г2с.
В горячекатанном или термически обработанном состоянии.
ГОСТ 5520-79.
от 4 до 160 нет - - - -
условный предел текучести сталь 09г2с.

ГОСТ 19281-89.
до 10 345 - - - -
условный предел текучести сталь 09г2с.
Металлический лист, листовой и широкополосный прокат в горячекатанном или термически обработанном состоянии.
ГОСТ 19281-89.
свыше 10 до 20 325 - - - -
условный предел текучести сталь 09г2с.
Металлический лист, листовой и широкополосный прокат в горячекатанном или термически обработанном состоянии.
ГОСТ 19281-89.
свыше 20 до 32 295 - - - -
условный предел текучести сталь 09г2с.
Металлический лист, листовой и широкополосный прокат в горячекатанном или термически обработанном состоянии.
ГОСТ 19281-89.
свыше 32 до 160 265 - - - -
условный предел текучести сталь 09г2с.

ГОСТ 19281-89.
свыше до 10 345 - - - -
условный предел текучести сталь 09г2с.
Сортовой и фасонный прокат металла в горячекатанном или термически обработанном состоянии.
ГОСТ 19281-89.
свыше 10 до 20 325 - - - -
условный предел текучести сталь 09г2с.
Сортовой и фасонный прокат металла в горячекатанном или термически обработанном состоянии.
ГОСТ 19281-89.
свыше 20 до 32 295 - - - -
условный предел текучести сталь 09г2с.
Сортовой и фасонный прокат металла в горячекатанном или термически обработанном состоянии.
ГОСТ 19281-89.
свыше 32 до 160 265 - - - -
условный предел текучести сталь 09г2с.

ГОСТ 19281-89.
свыше до 10 345 - - - -
условный предел текучести сталь 09г2с.
Гнутые металлические профили в горячекатанном или термически обработанном состоянии.
ГОСТ 19281-89.
свыше 10 до 20 325 - - - -
условный предел текучести сталь 09г2с.
Гнутые металлические профили в горячекатанном или термически обработанном состоянии.
ГОСТ 19281-89.
свыше 20 до 32 295 - - - -
условный предел текучести сталь 09г2с.
Гнутые металлические профили в горячекатанном или термически обработанном состоянии.
ГОСТ 19281-89.
свыше 32 до 160 265 - - - -
условный предел текучести сталь 09г2с.

ГОСТ 19281-89.
свыше до 10 345 - - - -
условный предел текучести сталь 09г2с.
Металлическая полоса, прокат полосовой в горячекатанном или термически обработанном состоянии.
ГОСТ 19281-89.
свыше 10 до 20 325 - - - -
условный предел текучести сталь 09г2с.
Металлическая полоса, прокат полосовой в горячекатанном или термически обработанном состоянии.
ГОСТ 19281-89.
свыше 20 до 32 295 - - - -
условный предел текучести сталь 09г2с.
Металлическая полоса, прокат полосовой в горячекатанном или термически обработанном состоянии.
ГОСТ 19281-89.
свыше 32 до 160 265 - - - -
условный предел текучести сталь 09г2с.
Термообработка с прокатного нагрева.
ТУ 302.02.009-89.
10 - 40 340 - - - -
условный предел текучести сталь 09г2с.
Нормализация.
ТУ 14-3-1128-82.
диаметр 57 - 325, толщина стенки 4 - 10 265 - - - -
условный предел текучести сталь 09г2с.
Нормализация.
ТУ 14-3-1128-82.
диаметр 57 - 325, толщина стенки более 10 нет - - - -
условный предел текучести сталь 09г2с.
В горячекатанном состоянии.
ТУ 14-1-5035-91.
до 10 345 - - - -
условный предел текучести сталь 09г2с.
В горячекатанном состоянии.
ТУ 14-1-5035-91.
свыше 10 до 20 326 - - - -
условный предел текучести сталь 09г2с.
В горячекатанном состоянии.
ТУ 14-1-5035-91.
свыше 20 до 32 295 - - - -

Металл, сталь марки СТ09г2с – это прочный и твердый материал, способный выдерживать различные нагрузки не разрушаясь и сохраняя свою форму. За что он и ценится, поэтому и применяется в различных конструкция, деталях, инструментах. Это общий, совершенно понятный «тезис». Теоретически, металл СТ09г2с может «ответить» на нагрузку двумя «способами». Принять ее на себя и не измениться в своей форме или немного деформироваться, но после снятия нагрузки вернуться в прежнее состояние. В крайнем случае, без снятия нагрузки, изменившаяся форма детали, должна оставаться постоянной, а сама стальная деталь будет находиться в «напряженном» состоянии. Это говорит о том, что металл находится «в зоне» упругих деформаций. Именно так все должно происходить в штатных ситуациях, что верно для любой, правильно рассчитанной, конструкции.

Однако, на практике, для стали СТ 09г2с существует определенный «порог». Всегда может возникнуть ситуация, когда приложенная нагрузка уже столь велика, что детали или элементы конструкции, изготовленные из сплава - металла марки СТ09г2с, начинают менять свою форму под ее воздействием. Что называется возникновением пластических деформаций в металле, сменивших упругие, с которыми деталь прекрасно справлялась при меньших нагрузках. (Внимание! Не путать, предел текучести с пределом упругости стали – это разные величины, хотя и близкие по абсолютному значению). Так вот, начало возникновения пластических деформаций в металле – это «начало конца». Нештатная ситуация, к которой стальная конструкция или металлическая деталь уже «не готова». С «бытовой» точки зрения, образец стали СТ09г2с еще остается вполне прочным, однако с технологической стороны, он уже не может соответствовать предъявляемым требованиям и не может использоваться по назначению. Его прочность нарушена, потому что изменилась форма образца. Именно поэтому, при любых расчетах, учитывающих прочность металла, знание «порога», оказывается более чем важным. Нагрузка, при которой металлическая деталь «выходит из зоны» упругих деформаций и «входит в зону» пластических деформаций, начинает необратимо менять свою форму, течь – это и есть: технологический предел текучести стали СТ09г2с. Физический предел текучести металла – это похожая, но несколько иная характеристика. В физике, обычно оперируют величиной нагрузки находящейся «на другом конце» кривой. Не той, при которой начинаются пластические деформации, а той при которой наступает полное разрушение образца металла - разрыв. Отсюда и возникают «разночтения», смысл которых сводится к тому, что одна и та же марка сплава СТ 09г2с, характеризуется двумя пределами текучести – объективным физическим и условным технологическим. Естественно, что как любая нагрузка, механическое напряжение или усилие, предел текучести стали СТ09г2с, как и предел прочности, измеряется так же, в тех же единицах. Мы помним – физические единицы измерения нагрузки – кг/мм2 или - Н/м2. Для ГОСТов и ТУ используется вариант измерения нагрузки в МПа, часто можно встретить механическое напряжение указанное в таких величинах, как КГС/мм2. Тут никакой «экзотики» нет.

Нужно сказать, что, предел текучести стали СТ 09г2с – это достаточно «неудобная» физическая характеристика сплава. Например, масса или удельный вес металла – это тоже физическая характеристика, которая почти не от чего не зависит. Ни от технологии производства стали этой марки, ни от способов воздействия на металл. Мы можем нагревать образец, закаливать его, обрабатывать, придавать любую форму, масса останется постоянной характеристикой. С пределом текучести стали СТ09г2с все сложнее. Это физическая характеристика металла данной марки, которая очень сильно зависит от «кучи обстоятельств». Например, толщина, как и форма образца (в меньшей степени), влияют на значение предела текучести. Термообработка, та же закалка или сварка, даже режим отпуска после нагрева, существенно изменяет величину предела текучести детали из стали СТ 09г2с. Наличие примесей в сплаве, добавок, присадок, то есть незначительное изменение химического состава, сразу скажется на значении предела текучести. Более того, технология получения стали СТ 09г2с, при ее изготовлении, определяет микроструктуру металла, тип кристаллической решетки, одновременно изменяя и величину предела текучести образца. Более всего эта физическая характеристика металла зависит от температуры. Чем выше температура нагрева образца, тем «охотнее и легче» сталь течет - «входит в зону» пластических деформаций.

Именно поэтому, предел текучести стали СТ 09г2с определяется не как общая физическая константа, характерная для этой марки металла вообще, а в каждом конкретном случае своя. Их получается несколько, хотя сталь одна. Обычно предел текучести стали СТ09г2с указывается для вариантов сортового металлопроката, изготовление которого подразумевает строгие ГОСТы (единые нормы), в том числе и для размеров, формы, технологии производства. А, как справочная информация, предел текучести стали СТ 09г2с в таблице, приводится для: фиксированной температуры – обычно это 20 градусов Цельсия. Если температура нагрева металла меняется, то сразу же изменяются и значения предела текучести стали СТ 09г2с.

Самое «неприятное» то, что вид нагрузки или направление приложенного давления, тоже играют большую роль. Нагрузка на образец из стали 09г2с может быть разной: на изгиб, на разрыв, на скручивание, на сжатие и так далее. Для каждого конкретного вида нагрузки, определяются свои значения предела текучести стали 09г2с. Например: предел текучести на кручение, предел текучести на изгиб, предел текучести на сжатие, на сдвиг, на срез, на растяжение и так далее. Достаточно часто, технологический предел текучести определяется условно, потому что физически, он может не существовать вообще. При определенных соотношениях нагрузки и температуры нагрева металла, здесь речь идет в основном о низких температурах, образец из стали ломается (разрушается) раньше, чем наступили пластические деформации. Однако и в этом случае, технологический условный предел текучести стали СТ09г2с при такой температуре указывается, как теоретическое значение и используется в расчетах. Хотя фактически, он практически не существует, потому что зона пластических деформаций слишком короткая, сразу «вступает в действие» предел прочности стали СТ 09г2с.

Кстати, пластические деформации в металле наступают не мгновенно, а нарастают постепенно с увеличением нагрузки. Поэтому, в общем случае, говорить о пороге текучести стали, как о четкой «точке перелома», не совсем корректно с физической точки зрения. Это «размытый», хотя и достаточно короткий отрезок кривой на графике. Требует уточнения вопрос, какая величина возникших в металле пластических деформаций должна считаться критичной и неприемлемой для эксплуатации изделия на производстве. Для таких, технологических ситуаций, общепринятым условным пределом текучести стали СТ 09г2с считается величина нагрузки, при которой образец изменяет форму на 0.2%. Она указывается во всех таблицах, где приводятся механические свойства этого сплава металла. В нашем примере рассмотрены такие варианты как СОРТОВОЙ И ФАСОННЫЙ МЕТАЛЛИЧЕСКИЙ ПРОКАТ из стали марки 09г2с: ГОСТ 19281-73, ГОСТ 2590-2006, ГОСТ 2591-2006, ГОСТ 8239-89, ГОСТ 8240-97, ГОСТ 19281-89. КАЛИБРОВАННЫЙ ПРУТОК из стали марки 09г2с: ГОСТ 7417-75, ГОСТ 8560-78, ГОСТ 10702-78. ПОКОВКИ И КОВАНЫЕ ЗАГОТОВКИ из стали марки 09г2с: ГОСТ 1133-71. МЕТАЛЛИЧЕСКИЙ ЛИСТ из стали марки 09г2с: ГОСТ 5520-79, ГОСТ 19281-89,ТУ 14-1-5034-91, ТУ 302.02.009-89. МЕТАЛЛИЧЕСКИЙ ЛИСТ толстый из стали марки 09г2с: 19282-73, ГОСТ 5520-79, ГОСТ 5521-93, ГОСТ 19903-74. МЕТАЛЛИЧЕСКИЙ ЛИСТ тонкий из стали марки 09г2с: ГОСТ 17066-94, ГОСТ 19904-90. МЕТАЛЛИЧЕСКАЯ ПОЛОСА из стали марки 09г2с: ГОСТ 103-2006, ГОСТ 82-70. МЕТАЛЛИЧЕСКАЯ ПРОВОЛОКА из стали марки 09г2с: ГОСТ 17305-91, ГОСТ 5663-79. МЕТАЛЛИЧЕСКИЕ ТРУБЫ из стали марки 09г2с: ТУ 14-3-1128-82. МЕТАЛЛИЧЕСКИЕ ГНУТЫЕ ПРОФИЛИ из стали марки 09г2с: ГОСТ 19281, ТУ 14-1-5035-91.

Изделия из низколегированной конструкционной стали 09Г2С востребованы во многих отраслях производства, что подкрепляется широким предложением сортамента продукции этой марки. Благодаря своим физическим свойствам, сталь 09Г2С заслуженно заняла свою позицию на рынках современного спроса и предложений. Характеристики стали 09Г2С предоставляют возможность применять её в качестве основного материала при изготовлении деталей, которые предназначены для работы в температурном диапазоне рабочей среды от -70 ºС до + 425 ºС, что при проектировании изделий привлекает к себе внимание ещё большего числа конструкторов.

Перед тем, как перейти к подробному рассмотрению химического состава, нужно понять, что означает расшифровка стали 09Г2С. Буквы «С» и «Г» сообщают о том, что в составе сплава имеется марганец и кремний. Но в каком количестве? Давайте разберёмся.

Первая цифра, стоящая в начале названия марки, сообщает о количестве углерода, содержащегося в сплаве, и отображаемая в сотых долях. Соответственно, процент углерода в сплаве 09Г2С составляет примерно 0,09. Следующие цифры показывают содержание легирующих элементов: марганца в этом сплаве содержится около 2% и менее 1% кремния.

Помимо основных легирующих элементов, химический состав стали 09Г2С содержит в себе нижеследующие составляющие периодической таблицы:

Хим.элемент Содержание в стали, %
C Менее 0,12
Si 0,5…0,8
Mn 1,3…1,7
Ni Менее 0.3
S Менее 0.035
P Менее 0.03
Cr Менее 0.3
V Менее 0.12
N Менее 0.008
Cu Менее 0.3
As Менее 0.08

Суммарное количество легирующих компонентов в низколегированных сплавах не превышает значения 2,5%. Удельный вес стали 09Г2С равен 7850 кг/м 3 , но нужно заметить, что плотность стали непостоянна и может иметь небольшой разброс значений, которые находятся в прямой зависимости от количества легирующих элементов. Но в любом случае, относительно небольшой вес готового изделия, в котором при изготовлении деталей прибегли к использованию стали этой марки, имеет большое преимущество по сравнению с другими более тяжеловесными сплавами.

Физические свойства

Конструкционная сталь 09Г2С обладает высокой способностью сохранять свои характеристики при работе под давлением в широком температурном интервале, долговечна, устойчива к нагрузкам с переменным вектором силы, а также подвергается термической обработке, которая оказывает значительное влияние на показатели механических показателей.

Коэффициент линейного расширения (КЛР), который описывает способность сплавов сохранять свой объём при увеличении температуры при постоянном показателе давления, изменяется всего на 2,4×10-6 единицы при изменении температуры со 100 ºС до 500 ºС (1,14×10-5 при 100 ºС против 1,38×10-5 при 500 ºС). Наглядное описание характеристик линейного расширения приведено ниже:

Несмотря на то, что сталь 09Г2С является низколегированной, она не проявляет такое свойство, как флокеночувствительность. Малое присутствие углерода в сплаве обеспечивает удовлетворительный показатель свариваемости деталей из стали этой марки. Нужно отметить, что высокое содержание углерода в сплавах при его выгорании приводит к возникновению дополнительных микропор, а также к образованию закалочной структуры, что отрицательно сказывается на качестве сварного шва, а в стали 09Г2С этого не наблюдается.

Сварка стали 09Г2С не требовательна к типу электродов и может проходить с использованием таких способов сварки, как ручная дуговая, электрошлаковая, автоматическая дуговая сварка под флюсом и с газовой защитой. Сплав марки 09Г2С не имеет ограничений по свариваемости материала, а детали из листового проката с сечением до 40 мм могут подвергаться сварке без предварительной разделки кромок. Детали, подготовленные к сварке, не нуждаются в дополнительной химической или термической обработке. Миграция легирующих элементов по всему сечению сварного шва обеспечивает его высокие прочностные характеристики и одновременно хорошие технические показатели ударной вязкости.

Для уменьшения признаков возникновения закалочной структуры, неизбежно формирующейся при сварке, сварное изделие следует подвергнуть высокотемпературному отпуску с температурой нагрева от 600 до 660 ºС. Охлаждение изделия должно быть медленным, с печью, что поможет избежать коробления его отдельных частей. Допускается не проводить термическую обработку деталей, прошедших сварку, и имеющих толщину поперечного сечения до 36 мм.

Механические свойства

Механические свойства стали 09Г2С описывают следующие характеристики для сортового и фасонного проката сечением до 10 мм:

Вид механических характеристик Температура апробирования, ºС Значение
Временное сопротивление Ϭ 0,2 , МПа +20 (комнатная) 345
Предел прочности Ϭ В , МПа 490
Удлинение δ 5 , % 21
Ударная вязкость КСU 64
КСU -40 -40 39
КСU -60 -60 34

Для того, чтобы определить класс прочности (КП) испытываемого образца, следует обратиться к ГОСТу 19281-2014, в котором подробно показаны все ключевые характеристики, на которые следует опираться при проведении испытаний или оценке готового протокола на категорию прочности.

Стоит не забывать, что этот механический показатель напрямую зависит от химического набора соответствующих компонентов, и присутствие в большем процентном содержании какого-либо элемента может сыграть ключевую роль при формировании показателей прочности при обработке этой стали.

В зависимости от класса прочности, изменяется и такой показатель механических характеристик, как твёрдость. Зависимость этих двух показателей прямая: чем выше категория прочности материала, тем выше и значение твёрдости. Обычно твёрдость низколегированных сплавов измеряется по методу Бринелля, и показатель твёрдости обозначается в единицах НВW, но в зависимости от требований, предъявляемых к изделию, и месту контроля (основной материал или материал сварного шва), может изменяться и метод измерения твёрдости. В таком случае, твердость материала может быть выражена в единицах по шкале Роквелла, Виккерса и т.д.

Режим термообработки стали назначается согласно критическим точкам:

В зависимости от требуемых показателей механических свойств, назначается режим термической обработки. Нормализация и закалка стали 09Г2С проходит при высокотемпературном нагреве от 930 до 950 ºС. Зависимость мехсвойств от температурного режима отпуска приведена ниже:

Температура отпуска, °С Предел текучести, Предел прочности, Удлинение, Относительное сужение,
20 295×106 405×106 30 66
100 270×106 415×106 29 68
200 265×106 430×106
300 220×106 435×106
400 205×106 410×106 27 63
500 185×106 315×106 63

Как следует из таблицы, чем выше температурный режим сопутствующего отпуска, тем ниже у сплава сопротивление разрыву.

Термическая обработка способствует образованию сплава с двухфазной структурой, дисперсность зерна которого и определяет основные показатели механических свойств материала.

Скачать ГОСТ 19281-2014