Цифровая фабрика будущего. Цифровая экономика: как специалисты понимают этот термин. Настоящее и будущее аддитивных технологий

Что нужно для ускорения цифровизации промышленности?

На промышленных предприятиях России постепенно проходит апробация технологий «умного» производства и фабрик, новые цифровые проекты запускают компании из сегментов авиа-, двигателе- и судостроения .

На сегодняшний момент на государственном уровне утверждены планы по строительству 40 «Фабрик будущего». Вложения в проекты на первом этапе составят 15,6 млрд рублей и обеспечат 1,5%-ную долю на мировом рынке «умных» фабрик.

Какие smart-производства появляются в России? Что нужно для ускорения цифровизации промышленности?

Цифровой ВВП

Постепенно российская промышленность внедряет на своих предприятиях элементы «умного» производства, на государственном уровне разворачиваются программы по созданию «умных» фабрик.

Чтобы ускорить этот процесс, в 2017 году президиум Совета при президенте России по модернизации экономики и инновационному развитию утвердил дорожную карту рабочей группы «Технет». Документ представляет собой план мероприятий программы «Национальная технологическая инициатива», включает в себя развитие цифрового проектирования и моделирования, робототехники, Big Data и прочих технологий для управления и автоматизации промышленности.

Ключевое значение в дорожной карте «Технет» отводится формированию так называемых «Фабрик будущего» - технологических платформ и решений, объединяющих элементы цифровых, «умных» и виртуальных фабрик. Речь идет о применении цифрового проектирования и производства, проведении виртуальных испытаний.

Авторы дорожной карты отмечают: «Цифровая фабрика ориентирована на проектирование и производство продукции нового поколения, как правило, от стадии исследования и планирования, когда закладываются базовые принципы изделия, до стадии создания цифрового макета продукта, «цифрового двойника» и опытного образца или мелкой серии.

«Умная» фабрика рассчитана на производство продукции нового поколения от заготовки до готового изделия по цене серийного производства текущего индустриального уклада.

Виртуальная фабрика - это объединение цифровых и (или) «умных» фабрик в единую сеть либо как части глобальных цепочек поставок, либо как распределенных производственных активов ».

В 2015 году объем мирового рынка услуг «Фабрик будущего» составил 773 млрд долларов США, а доля России в нем - 0,28%. В 2035 году объем мирового рынка составит 1,4 млрд долларов США, а доля РФ в ней может составить 1,5%. По планам Минпромторга РФ, это произойдет за счет создания к 2035 году 40 «Фабрик будущего». Объем финансирования первого этапа программы до 2019 года - 15,6 млрд рублей, в том числе 8,5 млрд рублей из федерального бюджета.

Аналитики McKinsey Global Institute отмечают, что цифровизация российского производства к 2025 году ежегодно способна увеличивать объем ВВП страны на сумму от 1,3 до 4,1 трлн рублей. Применение цифровых технологий сократит сроки выхода продукта на рынок на 20-50% и повысит производительность за счет автоматизации на 45-55%.

Инвестиции в испытания

«Умные» системы появляются в авиастроении и вертолетостроении: в Объединенной авиастроительной корпорации (ОАК) используется концепция виртуального конструкторского бюро, когда инженеры из нескольких конструкторских бюро и производственных площадок работают над проектированием модели самолета в единой цифровой среде. Технология применяется на «Гражданских самолетах Сухого», в « », « » и холдинге «Вертолеты России».

Авторы дорожной карты «Технет» прогнозируют, что лидером по реализации проектов «умных» фабрик в России станет « » (входит в Объединенную двигателестроительную корпорацию, Ярославская область), предприятие специализируется на разработке и производстве газотурбинных двигателей для авиации, энергетики и т. д.

Госкорпорация «Ростех» заявила о планах запустить испытательный полигон на ярославском предприятии, инвестиции оцениваются в сумму около 7 млрд рублей. В рамках проекта «Умная фабрика» появится система управления жизненным циклом изделия (PLM-управление), это позволит также организовать обмен информации с сервисными центрами.

«Итогом реализации проекта станет организация «умного» производства, формирование компетенций и технологических решений для тиражирования «Умных заводов», способных достойно конкурировать на мировом рынке », - заявил губернатор Ярославской области Дмитрий Миронов.

Ожидается, что за первые три года на «Умной фабрике», созданной в «ОДК-Сатурне», будут доведены до промышленного использования 20 технологий.

В ОДК добавили, что в 2017 году был запущен первый этап проекта на базе «ОДК-Сатурн» - акселератор технологических проектов в области передовых производственных технологий. Был отобран ряд проектов, обладающих высоким потенциалом внедрения в производство. Также разработаны образовательные программы для дальнейшей работы и привлечены первые инвесторы. В целом наиболее востребованы для реализации на полигоне технологические решения, касающиеся ряда сегментов. Речь идет об идеях в области математического моделирования, компьютерного и суперкомпьютерного инжиниринга, IoT и .

Тираж для верфи

При поддержке Национальной технологической инициативы объявлен проект на предприятии Объединенной судостроительной корпорации. На Средне-Невском судостроительном заводе (СНСЗ, расположен в Санкт-Петербурге) в ближайшие годы планируется запуск цифровой верфи. Будет создана база данных по всем компонентам, применяемым в судостроении, вместо натурных испытаний изделий начнут применять компьютерную «проверку» продукции.

Цифровизация позволит увеличить производственные мощности предприятия в два раза и повысить объемы экспорта. Стоимость проекта составит 350 млн рублей.

«Большую часть средств (245 млн рублей) предполагается получить из федерального фонда Национальной технологической инициативы, еще 105 млн рублей - собственные средства завода. Мы приступим к созданию цифровой верфи независимо от получения субсидии. Субсидия позволит ускорить процесс, но мы в любом случае будем работать над проектом », - заявил генеральный директор СНСЗ Владимир Середохо.

При успешной реализации проекта на СНСЗ модель планируется тиражировать на других российских верфях.

Госзаказ для smart-проектов

В корпорации «Пумори» (профиль компании - технологический инжиниринг) отмечают, что среди российских компаний интерес к «умному» производству увеличился. За последние три года спрос на smart-технологии вырос в 3-3,5 раза. Компания провела работу по внедрению систем автоматизации на более чем 100 предприятиях в российских регионах.

Также корпорация вывела на рынок комплексный продукт Smart Factory от японской станкостроительной компании OKUMA и собственную разработку систему инструментообеспечения TOOL-MANAGEMENT.

Проект «Наставники: не рядом, а вместе!»

Лидер проекта: Александра Юрьевна Телицына, исполнительный директор MOO «Старшие Братья Старшие Сестры» .

Проект ориентирован на детей, находящихся в трудной жизненной ситуации. Адаптироваться и полноценно участвовать в жизни общества таким детям помогает индивидуальное общение с наставниками. Суть проекта - привлечение в качестве наставников успешных взрослых людей - деятелей культуры и спорта, представителей бизнеса и власти. В настоящее время в проекте принимают участие директора АСИ. Программа индивидуального наставничества дает детям возможность почувствовать уверенность в своих силах, развить лидерские компетенции, сориентироваться в выборе профессии.

АСИ окажет информационную и административную поддержку, поможет наладить коммуникацию с региональными органами власти с целью тиражирования проекта.

Проект «Этномир»

Лидер проекта: Руслан Фаталиевич Байрамов, президент Международного Фонда «Диалог Культур - Единый Мир» .

Культурно-образовательный центр «Этномир» в Калужской области за десять лет существования принял полтора миллиона гостей. Этнографический парк знакомит с жизнью, традициями и культурой народов России и мира. На аутентично воссозданных дворах размещены ремесленные мастерские, дома-гостиницы, музеи, рестораны традиционной кухни, сувенирные магазины; в Центре работают образовательные программы для детей, проходят фестивали, карнавалы, выставки, конференции, концерты, связанные с культурой разных стран и народностей.

В планах проекта - сделать «Этномир» креативным городом дружбы народов. Парк рассчитывает расширить свою территорию и увеличить посещаемость до 10 миллионов человек в год.

АСИ окажет консультационную и методологическую поддержку по созданию модельной программы дополнительного образования детей на базе культурно-образовательного центра «Этномир», а также содействие в развитии международных контактов.

Публикация подготовлена сотрудниками CompMechLab ® по материалам spbstu.ru , kremlin.ru , strf.ru , minpromtorg.gov.ru и собственной информации.

Задача - работа в области высокотехнологичной промышленности, увеличение ее экспортного потенциала с выходом на глобальные рынки.

По словам участников процесса, ожидается прорыв в сфере научно-технического развития РФ.
О том, что такое фабрика будущего, рассказал председатель комитета по промышленной политике и инновациям Санкт-Петербурга Максим Мейксин.

Цифровой двойник

- Что представляет собой новая концепция и почему на неё возлагаются такие надежды?

Существует два способа выпуска продукции: классический, когда опытный образец изготавливают по чертежу, и новый подход, при котором будущее изделие формируется в виде цифрового двойника. Процесс испытания, например, автомобиля и его сборку с учетом результатов испытаний можно имитировать в цифровой программе. Технологии производства отрабатываются на компьютерной модели. И само производство выглядит иначе, чем классическое, потому что цифровой двойник позволяет прогнозировать свойства будущего изделия, добиваться нужного качества. В какой-то момент двойник начинает «обучать» своего прототипа, реальный объект: на основе работы цифрового аналога, скажем, самолета, можно сделать прогноз его эксплуатационной надёжности. То же и с производством лекарств, цифровые двойники которых позволят рассчитать нужную молекулу не опытным многолетним путем, а гораздо более коротким математическим и просчитать воздействие на человеческий организм.

- То есть цифровой двойник станет ключевым понятием при создании нового типа промышленности?

Наша задача показать предприятиям, как нужно мыслить в новой парадигме, в формате цифровых фабрик, которые открывают широкие возможности. Чтобы не догонять промышленных лидеров, а добежать первыми в этой конкурентной гонке, срезав угол, создав цифровую промышленность, которая посредством цифровых двойников позволит реализовать самые перспективные идеи на высоком уровне. Здесь очень важна работа, которую ведет Политехнический университет. Для реализации проекта «Фабрика будущего» в Петербурге создан проектный офис под руководством губернатора.

Когда революция лучше эволюции

- Насколько готовы петербургские предприятия к такой перестройке?

На уровне Министерства промышленности и торговли создана специальная группа, занимающаяся оценкой готовности к работе в новом формате. Около 25 предприятий Петербурга заявили о такой готовности. Среди них Средне-Невский судостроительный завод, который строит цифровую верфь. Это будет хорошее конкурентное преимущество, многоуровневое, когда суда станут производиться, исходя из расчетных проектов цифровых моделей. Управление судами и контроль за ними также будет осуществляться при помощи программных продуктов. Облегчается целый ряд технологических операций, как производственных, так и управленческих, повышается производительность труда. Переход на цифровые фабрики - огромный шаг вперед.

- Получается, мы стоим на пороге новой научно-технической революции?

Точнее, четвертой промышленной. Есть два пути развития - эволюционный и революционный. До сегодняшнего дня наша промышленность развивалась эволюционным путём, серьёзно отставая в ряде отраслей, хотя в каких-то областях мы являемся безусловными лидерами. Поэтому выбор такой: либо закупать новое современное оборудование в соответствии с существующими стандартами, окупаемость которого 5-10 лет, либо переходить на цифровую платформу. Во втором случае мы можем дойти до цели быстрее конкурентов, не придётся окупать средства, вложенные в оборудование, мы в этом смысле свободны. У России есть шанс занять лидирующее место на глобальных рынках.

- Какова судьба предприятий, которые не перейдут на цифровые технологии?

Ещё недавно все знали такого мирового производителя, как «Кодак». Компания обеспечивала 80% мировой потребности в фотоплёнке и фотобумаге. Сейчас этой компании нет, плёнка мало кому нужна. Таких примеров много. Те предприятия, которые не будут переходить на новый формат работы, к сожалению, обречены. Задача правительства Санкт-Петербурга - помочь компаниям вписаться в новые условия, стать высокотехнологичными, превосходящими своих партнёров в конкурентной гонке.

А автор кто?

- Это просветительская функция?

Скорее, это роль проводника, указывающего направление. Суть в том, чтобы Центр НТИ и предприятия встретились и начали совместное движение вперёд. Мы готовы предоставить заинтересованным компаниям пакеты сформированных решений, вытекающих из опыта тех предприятий, которые уже идут этим путём. Например, из практики работы Совета по конверсии можно извлечь немало полезного. Мы сейчас упаковываем нужные предложения в некий набор рекомендаций: например, как оптимизировать затраты при переходе на выпуск конкурентного продукта.

Цифровая фабрика - это когда к работе на стадии проектирования могут привлекаться представители разных компаний, наиболее компетентных в той или иной области. Кому в таком случае будут принадлежать авторские права?

Идея в том, что в мире много профессиональных команд, умеющих решать те или иные задачи. Компиляция результатов их работы, создание общего продукта гораздо удобней, чем заказ, выполняемый в рамках одной компании. Если есть возможность привлекать разные проектные команды, то получаются более качественные решения. Проблем с авторскими правами здесь не вижу, потому что всё равно остаётся заказчик, который оплачивает работу. Всё покупается в одном пакете вместе с правами.

Какие новации, появившиеся в Петербурге, можно назвать наиболее интересными? Проектами, опережающими время?

Их много. В сентябре со стапеля Балтийского завода сошёл первый серийный атомный ледокол «Сибирь» проекта 22220 - самый большой и мощный в мире. Совокупный потенциал судостроительной и радиоэлектронной промышленности позволяет нашему городу стать одним из центров создания беспилотного морского транспорта. Крупным экспортёром инновационной продукции стал концерн «Гранит-Электрон», выпустивший уникальные системы наклонного бурения для нефтегазовой промышленности. Годовой объем его экспорта составил 2,5 миллиарда рублей. В 2017 году Петербург занял первое место в рейтинге инновационных регионов Российской Федерации. По данным Национального рейтинга «Техуспех-2017», в топ-100 российских инновационных компаний вошли 15 предприятий Петербурга, лидеров фармацевтики, машиностроения, электроники и инжиниринга.

)
Тема 2. Цифровая экономика
Тема 2.1 Маркетинг и современные информационные технологии (презентация , конспект , самостоятельная работа)
Тема 2.2 Цифровой след потребителя (презентация , конспект)
Тема 3. Концепция Фабрик Будущего
Тема 3.1 Современные технологические тренды и предпосылки, ведущие к созданию Фабрик Будущего (презентация , конспект)
Тема 3.2 Архитектура Фабрик Будущего. Цифровая - Умная - Виртуальная Фабрики (презентация , конспект)
Тема 4. Цифровое проектирование. Цифровая фабрика.
Тема 4.1 Компьютерный инжиниринг, возможности цифрового проектирования (презентация , конспект)
Тема 4.2 Построение Цифровой фабрики (презентация , конспект)
Тема 5.Аддитивные технологии
Тема 5.1 Обзор существующих технологий (презентация , конспект)
Тема 5.2. Перспективы использования 3D-печати для Фабрик Будущего (презентация , конспект)
Тема 6. Новые материалы
Тема 6.1 Композитные материалы (презентация , конспект)
Тема 6.2 Мета, наноматериалы и суперсплавы (презентация , конспект)
Экзамен по модулю 1

Модуль 2
Тема 7. Инструменты цифровой трансформации компании
Тема 7.1 Понятие цифровой трансформации (презентация , конспект)
Тема 7.2 Интернет вещей и технологии работы с Big Data (презентация , конспект , самостоятельная работа)
Тема 7.3 Облачные решения для цифровой трансформации (презентация , конспект)
Тема 8. Управление цифровой компанией (презентация , конспект)
Тема 9. Умная фабрика
Тема 9.1 Концепция «Умной» Фабрики (презентация , конспект)
Тема 9.2 Системы управления умным производством (презентация , конспект , самостоятельная работа)
Тема 9.3 Введение в робототехнику (презентация , конспект)
Тема 10. Виртуальная фабрика
Тема 10.1 Концепция Виртуальной Фабрики (презентация , конспект)
Тема 10.2 Построение логистических сетей для Виртуальной Фабрики (презентация , конспект)
Экзамен по модулю 2
Итоговая аттестация. Прокторинг

Курс состоял из 10 тем, а некоторые темы состояли из подтем, содержание которого я описал выше. По каждой подтеме необходимо просмотреть видеолекции и сдать тесты. К каждой видеолекции выложены конспекты лекций и презентации к ним в формате pdf-файлов. Также в составе некоторых тем присутствуют практические и самостоятельные работы, для сдачи которых необходимо также пройти тестирование. Курс делится на два модуля, по которым нужно сдать экзамены тоже в виде тестов, но на этот раз время на сдачу ограничено в размере одного часа. У каждого контрольного задания (тест, практическая работа) есть срок выполнения (дедлайн), по истечении которого даже правильные ответы система принимать не будет! В расписании курса указан дедлайн каждого задания, который варьируется от двух до четырех недель в зависимости от его сложности. И в заключении необходимо сдать общий итоговый экзамен с прокторингом – механизмом контроля за честным выполнением проверочных работ и экзаменов.

Экзамен с прокторингом представляет собой тестирование, во время которого за вами через вебкамеру с микрофоном следит человек - проктор, также он следит и за вашим рабочим столом на вашем компьютере (для этого вам необходимо будет открыть доступ к нему на время сдачи). Во время данного экзамена пользоваться никакими материалами нельзя. Также запрещено куда-нибудь уходить, с кем-либо общаться во время экзамена, уводить взгляд с экрана компьютера. Общение с проктором происходит через чат. Для сдачи экзамена с прокторингом необходимо предварительно записаться. На данном курсе это можно было сделать с 4 декабря по 28 декабря с понедельника по пятницу с 9.00 до 23.00 и в субботу с 9.00 до 12.00. Для сдачи итогового экзамена необходимо на компьютер установить google chrome и расширение к нему Examus .

Когда я сдавал экзамен проктор потребовал от меня, чтобы я поднял мой ноутбук и показал ему весь свой стол, за которым я сидел, а также включить люстру, так как ему было темно и не видно, хотя у меня были включены лампа и торшер. Также для идентификации личности необходимо показать свой паспорт на вебкамеру и его сфотографировать и фото отправить.

После успешного освоения данного курса по почте высылают удостоверение о повышении квалификации. Данный курс я прошел полностью бесплатно. Система оценивания 100-балльная. Чтобы получить удостоверение о повышении квалификации, необходимо было набрать не менее 40% по практическим заданиям и не менее 60% по промежуточным тестам, тестированию по модулям и экзамену. К примеру, на экзамене с прокторингом я набрал 95 баллов. Для общения предусмотрен форум, где можно задать команде курса вопросы, высказать ей свое мнение по теме, обсудить материал с другими слушателями и помочь им в его понимании.

Для желающих зачесть пройденный онлайн-курс при освоении образовательной программы бакалавриата или специалитета в вузе предусмотрена уникальная для России возможность получения сертификатов, электронная версия которого размещается на сайте Санкт-Петербургского политехнического университета Петра Великого: http://open.spbstu.ru/02-cert/

В общем виде сертификат выглядит так:

Приложение к нему:

О курсе

Курс разработан Санкт-Петербургским политехническим университетом Петра Великого, Центром НТИ «Новые производственные технологии» на базе ИППТ СПбПУ совместно с мировым лидером в области ERP-систем SAP, ведущим отечественным Инжиниринговым центром CompMechLab при поддержке Северо-Западного регионального центра компетенций в области онлайн-обучения.

Предлагаемые в курсе материалы уникальны, публикуются в такой системной подаче впервые.

Из википедии:

Алексе́й Ива́нович Боровко́в (род. 7 июня 1955, Ленинград) - советский и российский ученый в области вычислительной механики и компьютерного инжиниринга, член-корреспондент Российской инженерной академии и Международной академии наук высшей школы (МАН ВШ), Почетный работник сферы образования Российской Федерации (2017).

Область научных интересов - вычислительная механика и компьютерный инжиниринг (Computer-Aided Engineering), мульти- и трансдисциплинарные компьютерные технологии для решения промышленных задач, передовые производственные технологии.

По инициативе А. И. Боровкова в 1987 году на кафедре «Механика и процессы управления» физико-механического факультета Политехнического университета организована учебная и научно-исследовательская лаборатория «Вычислительная механика» (Computational Mechanic Laboratory - CompMechLab), заведующим которой он стал. На базе УНИЛ «Вычислительная механика» затем были созданы Центр наукоемких компьютерных технологий (Centre of Excellence - первый в СПбПУ центр превосходства, 2003 г.), высокотехнологичная инжиниринговая spin-out компания ООО Лаборатория «Вычислительная механика» (2006 г.), малое инновационное предприятие ООО «Политех-Инжиниринг» (2011 г.) и Инжиниринговый центр «Центр компьютерного инжиниринга» СПбПУ (2013 г.).

В настоящее время группа компаний функционирует под общим брендом CompMechLab® (CML).

А. И. Боровков - лидер мегапроекта федерального значения по созданию Фабрик Будущего в России, представленного и поддержанного на расширенном заседании экспертного совета 21 июля 2016 года.

Научно-исследовательская, просветительская, инновационная и предпринимательская деятельность А. И. Боровкова многократно получала высокую оценку экспертного сообщества и была отмечена разнообразными частными, общественными и государственными премиями, среди которых: премия Правительства Санкт-Петербурга «За выдающиеся достижения в области высшего профессионального образования» - цикл работ «Подготовка конкурентоспособных специалистов нового поколения, обладающих компетенциями мирового уровня» в научной области «Механика, машиностроение, вычислительная механика и компьютерный инжиниринг» - в номинации «Научные достижения, способствующие повышению качества подготовки специалистов и кадров высшей квалификации» (2008); XI независимая бизнес-премия «Шеф года», реализуемая федеральной группой деловых проектов Chief Time и журналом «Человек Дела» (2017) и многие другие.

В 2017 году ООО Лаборатория «Вычислительная механика» (головная компания CompMechLab®) стала лауреатом национальной промышленной премии Российской Федерации «Индустрия».

ООО Лаборатория «Вычислительная механика» разработала цифровую мультидисциплинарную кросс-отраслевую платформу для создания глобально конкурентоспособной продукции нового поколения CML-Bench . Платформа CML-Bench предназначена для автоматизации ключевых инженерных процессов, связанных с мгновенной кастомизацией, цифровым проектированием, моделированием, виртуальными испытаниями и подготовкой всей необходимой производственной документации, посредством трансдисциплинарного и надотраслевого компьютерного инжиниринга. Платформа CML-Bench является основой для создания Цифровых Фабрик Будущего – систем комплексных технологических решений по производству продуктов от этапа формализации базовых принципов изделия до этапа создания «умного» цифрового двойника на основе цифрового проектирования и моделирования с применением передовых производственных технологий.

Компания работает на мировом технологическом фронтире с компаниями-лидерами в своих отраслях, что позволяет постоянно наращивать уровень своих компетенций и сохранять глобальную конкурентоспособность уже на протяжении 10 лет. В своей работе компания применяет уникальную собственную разработку – CML-Цифровую платформу CML-Bench, которая лежит в основе CML-Экспертной интеллектуальной системы CML-AI – «интеллектуального помощника» системного инженера. Это делает возможным интеграцию на одной виртуальной площадке широкого арсенала лучшего мирового программного обеспечения для решения мультидисциплинарных инженерных задач, инфраструктуры суперкомпьютерных вычислительных мощностей и инженеров с компетенциями мирового уровня.

Портфель продуктов ООО Лаборатория «Вычислительная механика»:

Создание «цифровых двойников» изделий и процессов;
- Цифровое проектирование и моделирование узлов и агрегатов, изделий и технологических процессов их производства;
- Проведение виртуальных испытаний конструкций и изделий;
- Исследования свойств материалов, ресурса конструкций, оценка технологических процессов;
- Проектирование и исследование изделий из композиционных материалов и композитных структур;
- Проектирование изделий под заданную технологию производства: литье, штамповка, фрезеровка, аддитивное производство.

Сотрудники CompMechLab® имеют многолетний успешный опыт выполнения работ по заказам: отечественных высокотехнологичных компаний: госкорпораций “Ростех”, “Росатом”, “Роскосмос”, “Газпром”, “Концерн ВКО “Алмаз-Антей”, Объединенная авиастроительная корпорация, Объединенная двигателестроительная корпорация, Объединенная ракетно-космическая корпорация, Объединенная судостроительная корпорация, а также компаний Ракетно-космическая корпорация “Энергия” им. С.П. Королёва, АВТОВАЗ, КАМАЗ, “Силовые машины”, “Северсталь”, “ВСМПО-АВИСМА”, ФГУП НАМИ, АО «Климов» и многих других зарубежных высокотехнологичных компаний: ABB, Airbus, Alcoa, Boeing, BMW Group (BMW, MINI, Rolls-Royce), Daimler, Ferrari, General Electric, General Motors, LG Electronics, Samsung, Schlumberger, Siemens, Volkswagen Group (Audi, Bugatti Automobiles, Porsche, Volkswagen), Weatherford и др. С 2017 года CompMechLab ведёт активную работу с китайскими автопроизводителями. В числе заказчиков такие компании как BAIC Corp, Chery Automobile Corporation, а также Центральный Китайский автомобильный институт China Automotive Technology and Reseach Center (CATARC). В числе компаний, включившихся в создание Цифровых Фабрик Будущего в партнёрстве с CompMechLab, предприятия российской автомобильной промышленности – ГНЦ РФ ФГУП НАМИ (в рамках реализации проекта государственного значения «Единая модульная платформа» («Кортеж»)), ПАО «УАЗ» (в рамках реализации проекта по созданию внедорожника нового поколения), производитель современных автобусов – ООО «Бакулин Моторс Групп», двигателестроительное предприятие ПАО «ОДК-Сатурн» (входит в Объединённую двигателестроительную корпорацию) и АО «Средне-Невский судостроительный завод» (входит в Объединенную судостроительную корпорацию); высокотехнологичные предприятия Республики Татарстан – АО «НПО «ОКБ им. М.П. Симонова», АО «Казанское моторостроительное производственное объединение», ОАО «Казанский вертолетный завод», ПАО «КАМАЗ»; на данный момент отобраны наиболее актуальные отраслевые и корпоративные проблемы-вызовы для создания Фабрики Будущего с Объединенной авиастроительной корпорацией (ОАК).

ООО Лаборатория «Вычислительная механика» работает на мировом технологическом «фронтире», с компаниями-лидерами в своих отраслях, что позволяет перманентно наращивать уровень своих компетенций и сохранять глобальную конкурентоспособность уже на протяжении 10 лет. Компания в своей работу применяет уникальную собственную разработку – CML-цифровую платформу CML-Bench, которая лежит в основе CML-интеллектуальной систему CML-AI –« интеллектуального помощника» системного инженера. Это делает возможным интеграцию на одной виртуальной площадке широкого арсенала лучшего мирового программного обеспечения для решения мультидисциплинарных инженерных задач, инфраструктуры суперкомпьютерных вычислительных мощностей и инженеров с компетенциями мирового уровня.

Все ли слушатели курсов могут похвастаться, что куратором их курса был такой человек, как Боровков А.И.!?

Если вы являетесь руководителем компании или инженером, то я рекомендую пройти курс "Технологии «Фабрик Будущего»". Использование передовых производственных технологий и цифровая трансформация компании повысит производительность труда и рентабельность компании. Именно технологии, описанные в данном курсе, смогут повысит темпы роста российской экономики и повысить уровень жизни населения.

Благодарим редакцию журнала «Трамплин к успеху» НПО «Сатурн» за предоставление данного материала.

Таким образом, первым шагом к цифровому предприятию была разработка в цифровом виде продукта производства. И достаточно быстро появился и был удовлетворен запрос инженеров, последовавший за персональными системами автоматизированного проектирования, на средства поддержки коллективной разработки, разработку систем инженерного анализа, создание системы компьютеризированной технологической подготовки.

Появились новые попытки осмыслить возможности компьютеров (рост мощности которых уверенно следовал закону Мура) через новые методы прикладных систем - появилась концепция PLM (Product Lifecycle Management - управление жизненным циклом продукта), которая была призвана перевести в цифровой вид всю «жизнь» продукта от разработки до утилизации. Естественно, что при этом в качестве продукта обсуждаются сложные дорогостоящие изделия с длительным сроком эксплуатации. Здесь важно отметить, что достижение реального полного внедрения PLM-системы в тот момент близко к невозможности, учитывая сложности в поддержании цепочки поставок, где за каждым звеном возникновения информации скрывается самая сложная из природных систем - человек, со своими, присущими исключительно ему, навыками, устремлениями, опытом, проблемами…

Тем не менее, цифровое проектирование вместе с компьютерным расчетным моделированием сложных процессов (газодинамика, термодинамика и др.) позволило значительно сократить время вывода на рынок новых продуктов - таким примером стал газотурбинный двигатель SaM146.

Сейчас на предприятии мы имеем хорошую цифровую базу по продукту - от конструкции до техпроцессов с программами ЧПУ, но что это изменило в производстве? Улучшено взаимодействие между конструктором и технологом, между ними передаются цифровые модели ДСЕ, что практически исключает изготовление «устаревших» (без учета изменений) деталей, обеспечивает актуальность и соответствие конструкции и физического облика детали, но как это может повысить эффективность именно производственных процессов?

Еще одним фактором, влияющим именно на производственные процессы, стало появление методологий MRP, MRP-II, ERP и поддерживающих их разнообразных систем. Они позволяют, используя нормативные данные о составах изделий, маршрутах, нормах материалов и времени обработки, рассчитывать планы-графики изготовления, определять, когда и что необходимо для выполнения конкретных операций, выявлять ограничения - «узкие места», координировать деятельность производственных подразделений между собой. Но, однако, ожидания оправдались далеко не полностью. За конкретными действиями, событиями и решениями стоит человек, способный на ошибки. В постановку задач так же человек закладывает логику работы системы, зачастую выдавая желаемое за действительное. В результате - ошибки, недоверие к системам, «ручное» управление.

Возможной панацеей может стать концепция цифрового предприятия. Какие новые технологии смогут помочь в разрушении барьеров доверия производственников к результатам работы информационных систем?

Во-первых, в производственной системе может быть минимизирован человеческий фактор через внедрение неких сенсоров, которые позволят решить проблему с однозначностью информации о том, где находится деталь, в каком количестве она прошла через необходимые операции, выполнены ли они все, где задержалась и по каким причинам.

При этом возникает новый слой информации - реальная детальная информация о состоянии незавершенного производства в цехах. На этом может быть построена вторая технология цифровой фабрики - аналитика больших данных с элементами машинного обучения и искусственного интеллекта.

Третья идея - плотная информационная связка с оборудованием. Уже сейчас большое количество станков оснащено числовым программным управлением. В бортовых компьютерах этих станков содержится информация по выполненным программам, отработанному ресурсу и многому другому. Следовательно, в цифровой фабрике для оборудования могут быть реализованы два мощных результата:

  • интеграция информации о детали и режиме выполнения операции над ней, что позволит «размотать» возможный источник несоответствия при обнаружении такового (опять же аналитика больших данных);
  • переход от обслуживания станков «по ресурсу» на обслуживание «по состоянию» (используя большие данные и разработанные прогностические модели).

Мощным эффектом от технологий цифровой фабрики может стать новое качество ERP-систем, которые должны стать не только инструментами планирования и мониторинга, но и механизмом предсказания состояния производственной системы - «предиктивного менеджмента» - перехода от интуитивного принятия решения производственными менеджерами к решениям, поддержанным ИТ-системой на основе многофакторного анализа и прогноза развития ситуации.

Дальнейший переход к виртуальной фабрике должен быть сопряжен с созданием цифрового двойника производства в виртуальной среде. По аналогии с инженерными суперкомпьютерными расчетами, позволяющими смоделировать поведение физических объектов, возможно создание имитационной модели производственного предприятия для обеспечения «бесплатной» (с точки зрения инвестиций) отработки новых методов изготовления, оптимизации расположения станков, корпусов для улучшения логистики, анализа сценариев «что-если» по повышению пропускной способности.

Важным результатом реализации виртуальной фабрики становится проектирование изделий на заданную себестоимость, когда появляется возможность наложить конструктивный облик детали на реальные условия производства.

Ключевыми технологиями виртуальной фабрики станут технологии индустриального Интернета, позволяющие получать полную обратную связь от всех компонентов производственной цепочки. Возникнут новые требования к пакетам инженерных расчетов, в параметры оптимизации которых будут включены факторы технологичности изготовления, а это вызовет новый виток повышения требований к используемым суперкомпьютерным мощностям. Таким образом, виртуальная фабрика станет мощным драйвером развития нового программного обеспечения, обрабатывающего реально огромные массивы данных, возможно слабо структурированных, о реальной жизни предприятии. Эффективность использования этих новых инструментов даст возможность реально снизить эффект масштаба (точнее, перевести этот масштаб в термины массового производства индивидуализированных продуктов вместо большого тиража одинаковых). Безусловно, новые методы роботизированного производства, аддитивных технологий дадут эффект на конкретных рабочих местах либо технологических линиях, но кумулятивный, синергетический эффект от этих производственных технологий может быть достигнут только совместно с внедрением технологий виртуализации управления такими сложными передовыми производственными технологиями совместно с использованием уже существующих методов и оборудования.

Новые вызовы, поставленные четвертой промышленной революцией, подлежат решению в рамках проекта «Фабрика Будущего», определенного в дорожной карте «Технет» для реализации лидерских позиций нашей страны на рынке мирового высокотехнологичного производства. Описанные выше цифровые подходы организации производства предполагаются к разработке и апробации на Испытательном полигоне «Фабрики Будущего» для определения возможности и методов их дальнейшего внедрения и использования в НПО «Сатурн» и других предприятиях АО «ОДК» и ГК «Ростех».