Состав газовой турбины. Газовые турбины — надёжные силовые агрегаты современных электростанций. Компрессоры и турбины

Принцип действия газотурбинных установок

Рис.1. Схема ГТУ с одновальным ГТД простого цикла

В компрессор (1) газотурбинного силового агрегата подается чистый воздух. Под высоким давлением воздух из компрессора направляется в камеру сгорания (2), куда подается и основное топливо - газ. Смесь воспламеняется. При сгорании газовоздушной смеси образуется энергия в виде потока раскаленных газов. Этот поток с высокой скоростью устремляется на рабочее колесо турбины (3) и вращает его. Вращательная кинетическая энергия через вал турбины приводит в действие компрессор и электрический генератор (4). С клемм электрогенератора произведенное электричество, обычно через трансформатор, направляется в электросеть, к потребителям энергии.

Газовые турбины описываются термодинамическим циклом Брайтона Цикл Брайтона/Джоуля - термодинамический цикл, описывающий рабочие процессы газотурбинного, турбореактивного и прямоточного воздушно-реактивного двигателей внутреннего сгорания, а также газотурбинных двигателей внешнего сгорания с замкнутым контуром газообразного (однофазного) рабочего тела.

Цикл назван в честь американского инженера Джорджа Брайтона, который изобрёл поршневой двигатель внутреннего сгорания, работавший по этому циклу.

Иногда этот цикл называют также циклом Джоуля - в честь английского физика Джеймса Джоуля, установившего механический эквивалент тепла.

Рис.2. P,V диаграмма цикла Брайтона

Идеальный цикл Брайтона состоит из процессов:

  • 1-2 Изоэнтропическое сжатие.
  • 2-3 Изобарический подвод теплоты.
  • 3-4 Изоэнтропическое расширение.
  • 4-1 Изобарический отвод теплоты.

С учётом отличий реальных адиабатических процессов расширения и сжатия от изоэнтропических, строится реальный цикл Брайтона (1-2p-3-4p-1 на T-S диаграмме)(рис.3)

Рис.3. T-S диаграмма цикла Брайтона
Идеального (1-2-3-4-1)
Реального (1-2p-3-4p-1)

Термический КПД идеального цикла Брайтона принято выражать формулой:

  • где П = p2 / p1 - степень повышения давления в процессе изоэнтропийного сжатия (1-2);
  • k - показатель адиабаты (для воздуха равный 1,4)

Следует особо отметить, что этот общепринятый способ вычисления КПД цикла затемняет суть происходящего процесса. Предельный КПД термодинамического цикла вычисляется через отношение температур по формуле Карно:

  • где T1 - температура холодильника;
  • T2 - температура нагревателя.

Ровно это же отношение температур можно выразить через величину применяемых в цикле отношений давлений и показатель адиабаты:

Таким образом КПД цикла Брайтона, зависит от начальной и конечной температур цикла ровно так же, как и КПД цикла Карно. При бесконечно малой величине нагрева рабочего тела по линии (2-3) процесс можно считать изотермическим и полностью эквивалентным циклу Карно. Величина нагрева рабочего тела T3 при изобарическом процессе определяет величину работы отнесённую к количеству использованного в цикле рабочего тела, но ни каким образом не влияет на термический КПД цикла. Однако при практической реализации цикла нагрев обычно производится до возможно больших величин ограниченных жаростойкостью применяемых материалов с целью минимизировать размеры механизмов осуществляющих сжатие и расширение рабочего тела.

На практике, трение и турбулентность вызывают:

  • Неадиабатическое сжатие: для данного общего коэффициента давления температура нагнетания компрессора выше идеальной.
  • Неадиабатическое расширение: хотя температура турбины падает до уровня, необходимого для работы, на компрессор это не влияет, коэффициент давления выше, в результате, расширения не достаточно для обеспечения полезной работы.
  • Потери давления в воздухозаборнике, камере сгорания и на выходе: в результате, расширения не достаточно для обеспечения полезной работы.

Как и во всех циклических тепловых двигателях, чем выше температура сгорания, тем выше КПД. Сдерживающим фактором является способность стали, никеля, керамики или других материалов, из которых состоит двигатель, выдерживать температуру и давление. Значительная часть инженерных разработок направлена на то, чтобы отводить тепло от частей турбины. Большинство турбин также пытаются рекуперировать тепло выхлопных газов, которые, в противном случае, теряется впустую.

Рекуператоры - это теплообменники, которые передают тепло выхлопных газов сжатому воздуху перед сгоранием. При комбинированном цикле тепло передается системам паровых турбин. И при комбинированном производстве тепла и электроэнергии (когенерация) отработанное тепло используется для производства горячей воды.

Механически газовые турбины могут быть значительно проще, чем поршневые двигатели внутреннего сгорания. Простые турбины могут иметь одну движущуюся часть: вал/компрессор/турбина/альтернативный ротор в сборе (см. изображение ниже), не учитывая топливную систему.

Рис.4. Эта машина имеет одноступенчатый радиальный компрессор,
турбину, рекуператор, и воздушные подшипники.

Более сложные турбины (те, которые используются в современных реактивных двигателях), могут иметь несколько валов (катушек), сотни турбинных лопаток, движущихся статорных лезвий, а также обширную систему сложных трубопроводов, камер сгорания и теплообменников.

Как правило, чем меньше двигатель, тем выше должна быть частота вращения вала(ов), необходимая для поддержания максимальной линейной скорости лопаток.

Максимальная скорость турбинных лопаток определяет максимальное давление, которое может быть достигнуто, что приводит к получению максимальной мощности, независимо от размера двигателя. Реактивный двигатель вращается с частотой около 10000 об/мин и микро-турбина - с частотой около 100000 об/мин.



В состав электростанций относительно небольшой мощности могут входить как газотурбинные двигатели (ГТД), так и поршневые (ПД). В связи с этим у заказчиков часто возникает вопрос, какой привод предпочтительнее . И, хотя ответить на него однозначно невозможно, цель настоящей статьи - попытка разобраться в этом вопросе.

Введение

Выбор типа двигателя, а также их количества для привода электрогенераторов на электростанции любой мощности является сложной технико-экономической задачей. Попытки сравнить между собой в качестве привода поршневые и газотурбинные двигатели чаще всего делаются при условии использования в качестве топлива природного газа. Их принципиальные преимущества и недостатки анализировались в технической литературе , в рекламных проспектах производителей электростанций с поршневыми двигателями и даже на страницах Интернета.

Как правило, приводятся обобщенные сведения о разнице в расходах топлива, в стоимости двигателей без всякого учета их мощности и условий работы. Часто отмечается, что состав электростанций мощностью 10-12 МВт предпочтительнее формировать на базе поршневых двигателей, а большей мощности - на базе газотурбинных. Принимать эти рекомендации как аксиому не следует. Очевидно одно: каждый тип двигателя имеет свои преимущества и недостатки, и при выборе привода нужны некоторые, хотя бы ориентировочные, количественные критерии их оценки.

В настоящее время на российском энергетическом рынке предлагается достаточно широкая номенклатура как поршневых, так и газотурбинных двигателей. Среди поршневых превалируют импортные двигатели, а среди газотурбинных - отечественные.

Сведения о технических характеристиках газотурбинных двигателей и электростанциях на их базе, предлагаемых для эксплуатации в России, в последние годы регулярно публикуются в «Каталоге газотурбинного оборудования» .

Аналогичные сведения о поршневых двигателях и электростанциях, в состав которых они входят, можно почерпнуть только из рекламных проспектов российских и иностранных фирм, поставляющих это оборудование. Информация о стоимости двигателей и электростанций чаще всего не публикуется, а опубликованные сведения часто не соответствуют действительности.

Непосредственное сравнение поршневых и газотурбинных двигателей

Обработка имеющейся информации позволяет сформировать приведенную ниже таблицу, которая содержит как количественную, так и качественную оценку преимуществ и недостатков поршневых и газотурбинных двигателей. К сожалению, часть характеристик взята из рекламных материалов, проверить полную достоверность которых чрезвычайно трудно или практически невозможно. Необходимые для проверки данные о результатах работы отдельных двигателей и электростанций, за редким исключением , не публикуются.

Естественно, что приведенные цифры являются обобщенными, для конкретных двигателей они будут строго индивидуальными. Кроме того, некоторые из них даны в соответствии со стандартами ISO, а фактические условия работы двигателей существенно отличаются от стандартных.

Представленные сведения дают только качественную характеристику двигателей и не могут использоваться при подборе оборудования для конкретной электростанции. К каждой позиции таблицы можно дать некоторые комментарии.

Показатель Тип двигателя
Поршневой Газотурбинный
Диапазон единичных мощностей двигателей (ISO), МВт 0.1 - 16.0 0.03 - 265.0
Изменение мощности при постоянной температуре наружного воздуха Более устойчив при снижении нагрузки на 50%. КПД снижается на 8-10% Менее устойчив при снижении нагрузки на 50%. КПД снижается на 50%
Влияние температуры наружного воздуха на мощность двигателя Практически не влияет При снижении температуры до -20°C мощность увеличивается примерно на 10-20%, при повышении до +30°C - уменьшается на 15-20%
Влияние температуры наружного воздуха на КПД двигателя Практически не влияет При снижении температуры до -20°C КПД увеличивается примерно на 1.5% абс.
Топливо Газообразное, жидкое Газообразное, жидкое (по спецзаказу)
Необходимое давление топливного газа, МПа 0.01 - 0.035 Более 1.2
КПД по выработке электроэнергии при работе на газе (ISO) от 31% до 48% В простом цикле от 25% до 38%, в комбинированном - от 41% до 55%
Соотношение электрической мощности и количества утилизированной теплоты, МВт/МВт (ISO) 1/(0.95-1.3) 1/(1.4-4.0)
Возможности использования утилизированной теплоты выхлопных газов Только на нагрев воды до температуры выше 115°C На производство пара для выработки электроэнергии, холода, опреснения воды и т.д., на нагрев воды до температуры 150°C
Влияние температуры наружного воздуха на количество утилизированной теплоты Практически не влияет При снижении температуры воздуха количество теплоты при наличии регулируемого лопаточного аппарата у газовой турбины почти не уменьшается, при его отсутствии - уменьшается
Моторесурс, ч Больше: до 300 000 для среднеоборотных двигателей Меньше: до 100 000
Темп рост эксплуатационных затрат с увеличением срока службы Менее высокий Более высокий
Масса энергоблока (двигатель с электрогенератором и вспомогательным оборудованием), кг/кВт Существенно выше: 22.5 Существенно ниже: 10
Габариты энергоблока, м Больше: 18.3х5.0х5.9 при единичной мощности агрегата 16МВт без системы охлаждения Меньше: 19.9х5.2х3.8 при единичной мощности агрегата 25МВт
Удельный расход масла, г/кВт*ч 0.3 - 0.4 0.05
Количество пусков Не ограничено и не влияет на сокращение моторесурса Не ограничено, но влияет на сокращение моторесурса
Ремонтопригодность Ремонт может производиться на месте и требует меньше времени Ремонт возможен на специальном предприятии
Стоимость капремонта Дешевле Дороже
Экология Удельно - в мг/м3 - больше, но объем вредных выбросов в м3 меньше Удельно - в мг/м3 - меньше, но объем выбросов в м3 больше
Стоимость энергоблока Меньше при единичной мощности двигателя до 3.5МВт Меньше при единичной мощности двигателя более 3.5МВт

На энергетическом рынке представлен очень большой выбор двигателей, имеющих существенные различия в технических характеристиках. Конкуренция между двигателями рассматриваемых типов возможна только в диапазоне единичной электрической мощности до 16 МВт. При более высоких мощностях газотурбинные двигатели вытесняют поршневые практически полностью.

Необходимо учитывать, что каждый двигатель имеет индивидуальные характеристики, и только их следует использовать при выборе типа привода. Это позволяет формировать состав основного оборудования электростанции заданной мощности в нескольких вариантах, варьируя, в первую очередь, электрическую мощность и количество необходимых двигателей. Многовариантность затрудняет выбор предпочтительного типа двигателя.

О КПД поршневых и газотурбинных двигателей

Важнейшей характеристикой любого двигателя в составе электростанций является КПД по выработке электроэнергии (КПДэ), определяющий основной, но не полный объем потребления газа. Обработка статистических данных по значениям КПДэ позволяет наглядно показать области применения, в которых по этому показателю один тип двигателя имеет преимущества перед другим.

Взаимное расположение и конфигурация трех выделенных на рис. 1 зон, в пределах которых находятся точечные изображения значений электрического КПД различных двигателей, позволяет сделать некоторые выводы:

  • даже в пределах одного типа двигателей одинаковой мощности наблюдается значительный разброс значений КПД по выработке электроэнергии;
  • при единичной мощности более 16 МВт газотурбинные двигатели в комбинированном цикле обеспечивают значение КПДэ выше 48% и монопольно владеют рынком;
  • электрический КПД газотурбинных двигателей мощностью до 16 МВт, работающих как в простом, так и в комбинированном цикле, ниже (иногда очень существенно), чем у поршневых двигателей;
  • газотурбинные двигатели единичной мощностью до 1 МВт, появившиеся на рынке в последнее время, по значению КПДэ превосходят двигатели мощностью 2-8 МВт, наиболее часто применяемые сегодня в составе электростанций;
  • характер изменения КПДэ газотурбинных двигателей имеет три зоны: две с относительно постоянным значением - 27 и 36% соответственно и одну с переменным - от 27 до 36%; в пределах двух зон КПДэ слабо зависит от электрической мощности;
  • значение КПД по выработке электроэнергии поршневых двигателей находится в постоянной зависимости от их электрической мощности.

Однако эти факторы не являются основанием для того, чтобы отдать приоритет поршневым двигателям. Даже если электростанция будет вырабатывать только электрическую энергию, при сравнении вариантов состава оборудования с различным типом двигателей потребуется выполнить экономические расчеты. Необходимо доказать, что стоимость сэкономленного газа окупит разницу в стоимости поршневых и газотурбинных двигателей, а также дополнительного оборудования к ним. Количество сэкономленного газа не может быть определено, если неизвестен режим работы станции по отпуску электроэнергии в зимнее и летнее время. Идеально, если известны необходимые электрические нагрузки - максимальные (зимний рабочий день) и минимальные (летний выходной день).

Использование и электрической и тепловой энергии

Если же электростанция должна производить не только электрическую, но и тепловую энергию, то потребуется определить, за счет каких источников можно покрыть тепловое потребление. Таких источников, как правило, два - утилизированная теплота двигателей и/или котельная.

У поршневых двигателей утилизируется теплота охлаждающего масла, сжатого воздуха и выхлопных газов, у газотурбинных - только теплота выхлопных газов. Основное количество теплоты утилизируется из выхлопных газов с помощью утилизационных теплообменников (УТО).

Количество утилизированной теплоты в значительной степени зависит от режима работы двигателя по выработке электроэнергии и от климатических условий. Неверная оценка режимов работы двигателей в зимнее время приведет к ошибкам в определении количества утилизированной теплоты и неправильному выбору установленной мощности котельной.

Графики на рис.2 показывают возможности отпуска утилизированной теплоты от газотурбинных и поршневых двигателей для целей теплоснабжения. Точки на кривых соответствуют данным заводов-изготовителей о возможностях имеющейся техники для утилизации теплоты. На двигателе одной и той же электрической мощности производители устанавливают различные УТО - исходя из конкретных задач.

Преимущества газотурбинных двигателей в части выработки тепла бесспорны. Особенно это касается двигателей электрической мощностью 2-10 МВт, что объясняется относительно низким значением их электрического КПД. По мере роста КПДэ газотурбинных двигателей количество утилизированной теплоты должно неизбежно снижаться.

При выборе поршневого двигателя для электро- и теплоснабжения конкретного объекта необходимость использования котельной в составе электростанции почти не вызывает сомнений. Работа котельной требует увеличения расхода газа сверх необходимого для выработки электроэнергии. Возникает вопрос, как отличаются расходы газа на энергоснабжение объекта, если в одном случае используются только ГТД с утилизацией теплоты выхлопных газов, а в другом - поршневые двигатели с утилизацией теплоты и котельная. Только после досконального изучения особенностей потребления объектом электроэнергии и тепла можно ответить на этот вопрос.

Если принять, что расчетное потребление тепла объектом может быть полностью покрыто утилизированной теплотой ГТД, а недостаток теплоты при использовании поршневого двигателя компенсируется котельной, то можно выявить характер изменения суммарного расхода газа на энергоснабжение объекта.

Используя данные на рис. 1 и 2, можно для характерных точек зон, отмеченных на рис. 1, получить сведения об экономии или перерасходе газа при использовании приводов различного типа. Они представлены в таблице:

Абсолютные значения экономии газа справедливы только для конкретного объекта, характеристики которого были заложены в расчет, но общий характер зависимости отражен правильно, а именно:
при относительно близких значениях электрического КПД (разница до 10%) использование поршневых двигателей и котельной приводит к перерасходу топлива;

  • при относительно близких значениях электрического КПД (разница до 10%) использовние поршневых двигателей и котельной приводит к перерасходу топлива;
  • при разнице значений КПДэ более 10% для работы поршневых двигателей и котельной потребуется меньше газа, чем для ГТД;
  • существует некая точка с максимальной экономией газа при использовании поршневых двигателей и котельной, где разница между значениями КПДэ двигателей равна 13-14%;
  • чем выше значение КПДэ поршневого двигателя и ниже - газотурбинного, тем больше экономия газа.

В качестве дополнения

Как правило, задача не ограничивается выбором типа привода, требуется определить состав основного оборудования электростанции - тип агрегатов, их количество, вспомогательное оборудование.

Выбор двигателей для производства нужного количества электроэнергии определяет возможности выработки утилизированной теплоты. При этом надо учесть все особенности изменения технических характеристик двигателя, связанные с климатическими условиями, с характером электрической нагрузки, и определить влияние этих изменений на отпуск утилизированной теплоты.

Необходимо также помнить, что в состав электростанции входят не только двигатели. На ее площадке обычно располагается свыше десятка вспомогательных сооружений, работа которых также влияет на технические и экономические показатели электростанции.

Как уже указывалось, состав оборудования электростанции с технической точки зрения можно сформировать в нескольких вариантах, поэтому его окончательный выбор может быть обоснован только с экономических позиций.

При этом знание характеристик конкретных двигателей и их влияние на экономические показатели будущей электростанции чрезвычайно важно. При выполнении экономических расчетов неизбежен учет моторесурса, ремонтопригодности, сроков проведения и стоимости капитальных ремонтов. Эти показатели также индивидуальны для каждого конкретного двигателя независимо от его типа.

Нельзя исключать влияние экологических факторов на выбор типа двигателей для электростанции. Состояние атмосферы в районе предполагаемой эксплуатации электростанции может стать основным фактором при определении типа двигателя (несмотря ни на какие экономические соображения).

Как уже отмечалось, данные о стоимости двигателей и электростанций на их базе не публикуются. Изготовители или поставщики оборудования ссылаются на возможную разницу в комплектации, условия доставки и другие причины. Только после заполнения фирменного опросного листа будут представлены цены. Поэтому сведения в первой таблице о том, что стоимость поршневых двигателей мощностью до 3,5 МВт ниже стоимости газотурбинных такой же мощности, могут оказаться неверными.

Заключение

Таким образом, в классе единичной мощности до 16 МВт нельзя отдавать однозначное предпочтение ни газотурбинным, ни поршневым двигателям. Только тщательный анализ ожидаемых режимов работы конкретной электростанции по выработке электроэнергии и теплоты (с учетом особенностей конкретных двигателей и многочисленных экономических факторов) позволит полностью обосновать выбор типа двигателя. Определить состав оборудования на профессиональном уровне может специализированная фирма.

Использованная литература

  1. Габич А. Применение газотурбинных двигателей малой мощности в энергетике // Газотурбинные технологии. 2003, № 6. С. 30-31.
  2. Буров В. Д. Газотурбинные и газопоршневые энергетические установки малой мощности // Горныйжурнал. 2004, специальный выпуск. С. 87-89,133.
  3. Каталог газотурбинного оборудования // Газотурбинные технологии. 2005. С. 208.
  4. Салихов А. А., Фаткулин Р. М., Абрахманов P. P., Щаулов В. Ю. Развитие мини-ТЭЦ с применением газопоршневых двигателей в Республике Башкортостан // Новости теплоснабжения. 2003, № 11. С. 24-30.

Данная статья с незначительными изменениями взята из журнала "Турбины и дизели", №1(2) за 2006г.
Автор - В.П. Вершинский, ООО "Газпромэнергосервис".

§ 45. Турбинные установки

Судовые турбины служат для преобразования тепловой энергии пара или газа в механическую работу. Метод превращения энергии в турбине не зависит от рабочего тела, которое используется в турбине. Поэтому рабочие процессы, протекающие в паровых турбинах, не имеют существенного отличия от рабочих процессов, протекающих в газовых турбинах, а основные принципы проектирования паровых и газовых турбин одинаковы.

Свежий пар или газ, поступая в сопло, являющееся направляющим аппаратом, расширяется, потенциальная энергия превращается в кинетическую, и пар или газ приобретают значительную скорость. По выходе из сопла пар или газ попадает в каналы рабочих лопаток, насаженных на обод турбинного диска, сидящего на валу турбины. Рабочее тело давит на изогнутые поверхности рабочих лопаток, заставляя диск с валом вращаться. Совокупность рассматриваемых таких направляющих аппаратов (сопел) и рабочих лопаток на турбинном диске называется ступенью турбины . Турбины, имеющие лишь одну ступень, называются одноступенчатыми в отличие от многоступенчатых турбин.

Турбины по принципу работы рабочего тела (пара или газа) разделяют на две основные группы. Турбины, в которых расширение, пара или газа происходит только в неподвижных направляющих аппаратах, а на рабочих лопатках используется лишь их кинетическая энергия, называются активными . Турбины, в которых расширение пара или газа происходит также и при движении рабочего тела в каналах рабочих лопаток, называются реактивными. Турбины вращаются только в одну сторону и являются нереверсивными, т. е. они не могут изменять направление вращения. Поэтому на одном валу с главными турбинами переднего хода обычно предусматривают турбины заднего хода. Мощность судовых турбин заднего хода не превышает 40-50% мощности турбин переднего хода. Поскольку эти турбины не должны обеспечивать высокую экономичность в работе, число ступеней в них невелико.

Судовые паротурбинные установки, работающие при начальном давлении пара 40-50 атм и температуре пара 450-480° С, имеют экономический к. п. д. 24-27%.

Экономическим (эффективным) к. п. д. называется отношение тепла, превращенного в полезную работу, к теплу, развивающемуся при полном сгорании затраченного топлива. Эффективный к. п. д. характеризует экономичность двигателя. При повышении давления до 70-80 атм и температуры пара до 500- 550° С экономический к. п. д. возрастает до 29-31%. Дальнейшее повышение начального давления пара и совершенствование установок позволит увеличить к. п. д. судовой паротурбинной установки примерно до 35%.

Работа над судовыми газотурбинными установками (ГТУ) по существу носит еще экспериментальный характер, так как все еще не создано их серийной конструкции.

Газовая турбина отличается от паровой тем, что рабочим телом ее является не пар из котлов, а газы, образующиеся при сгорании топлива в специальных камерах.

Устройство и работа газовой турбины аналогичны устройству и работе паровой турбины. Они также бывают активные или реактивные, однокорпусные, многокорпусные и т. п. Отличаются газовые турбины от паровых более высокими температурными нагрузками: температура горячих газов бывает в пределах 700-800° С. Разница в температурном режиме уменьшает ресурсы времени работы газовых турбин.

В зависимости от способа сжатия воздуха и образования горячих газов различают газотурбинные установки с камерой горения и ГТУ со свободно-поршневыми генераторами газа (СПГГ). Отрицательным качеством ГТУ является большая потеря тепла при отводе отработавших газов.

Методом повышения экономичности ГТУ является использование тепла отработавших газов для подогрева воздуха, поступающего в камеру сгорания, так называемая регенерация.

Применение регенерации с одновременным двухступенчатым сжатием воздуха повышает эффективный к. п. д. установки до 28-30%. Такие ГТУ находят применение в качестве судовых силовых установок.

В судовой газотурбинной установке с камерой горения (рис.69) атмосферный воздух засасывается, сжимается компрессором низкого давления 1, располагаемым на одном валу с газовой турбиной 5, и направляется в холодильник 2, охлаждаемый забортной водой. Охлажденный воздух поступает в компрессор высокого давления 3, где снова сжимается до более высокого давления, после чего подается в регенератор 4, откуда подогретый отработавшими газами идет в камеру горения 6, где сгорает подающееся туда топливо. Продукты сгорания расширяются в газовой турбине 5 и через регенератор, отдав в нем часть тепла воздуху, выходят в атмосферу или используются в утилизационном котле.

Рис. 69. Схема газотурбинной установки с регенерацией и двухступенчатым сжатием воздуха.


Энергия, развиваемая в газовой турбине, не полностью используется по основному назначению, а частично расходуется на привод компрессоров. Для запуска газовой турбины ее необходимо раскрутить пусковыми электромоторами.

Газотурбинная установка со свободно-поршневым генератором газа (СПГГ) представляет собой активную или реактивную турбину и дизельный цилиндр, в котором происходит сжигание топлива. Комбинированная газотурбинная установка с СПГГ показана на рис. 70.

Цилиндр СПГГ 1 имеет два рабочих поршня 2 на одних штоках с поршнями компрессоров 3. При сгорании смеси воздуха с топливом, подаваемым через форсунку 11, газы в цилиндре расширяются, раздвигая поршни. В полостях 6 компрессорных цилиндров 5 создается разряжение и через клапаны 7 атмосферный воздух засасывается. Одновременно в полости 4 компрессорных цилиндров воздух сжимается и рабочие поршни возвращаются в исходное положение.

При расхождении поршней в цилиндре открываются сначала выхлопные окна 9, а затем продуваются окна 10. Отработанные газы через выхлопные окна поступают в ресивер 8 и оттуда - в газовую турбину 12.

При обратном ходе компрессорных поршней выхлопные и продувочные окна закрываются, воздух из полости 6 нагнетается в продувочный ресивер, а воздух в рабочем цилиндре сжимается. В конце сжатия температура воздуха поднимается и впрыснутое в этот момент форсункой топливо воспламеняется. Начинается новый цикл работы свободно-поршневого генератора газа.

Эффективный к. п. д. такой комбинированной газотурбинной установки с СПГГ приближается к 40%, что делает выгодной их установку на судах. Газотурбинные установки с СПГГ перспективны и будут широко использоваться на судах в качестве главных двигателей.


Рис. 70. Схема газотурбинной установки со свободно-поршневым генератором газа (СПГГ).


Судовые ядерные установки служат для получения тепловой энергии в результате деления ядер расщепляющихся элементов, которое происходит в аппаратах, называемых ядерными реакторами. Суда с такими установками имеют практически неограниченную дальность плавания.

Энергия, выделяемая реакцией деления ядер при использовании 1 кг урана, примерно равна энергии, получаемой при сжигании 1400 т мазута. Суточный расход ядерного топлива на транспортных судах исчисляется лишь десятками граммов. Срок смены тепловыделяющих элементов в судовых реакторах равен двумтрем годам. Несмотря на большой вес ядерной установки, вызванный большим весом биологической защиты, полезная грузоподъемность судов с ядерными установками, значительно больше грузоподъемности судов равных размерений, имеющих общепринятые силовые установки. Увеличение грузоподъемности на этих судах объясняется отсутствием на них обычного топлива.

Для повышения скорости движения судов применение установок, работающих на ядерной энергии, является экономически выгодным, позволяет повысить мощность силовых установок без резкого увеличения их веса. Решающим преимуществом судовых ядерных установок является отсутствие потребности в воздухе при их работе. Эта особенность позволяет решить проблему длительного движения судов под водой. Как известно, суда, плавая под водой, в однородной среде, встречают меньшее сопротивление, чем надводные суда, и, следовательно, при равных мощностях двигателей могут развивать большие скорости. Подводные транспорты большого водоизмещения могут быть значительно выгоднее в эксплуатации, чем надводные суда того же водоизмещения.

В качестве ядерного топлива для современных судовых реакторов применяется искусственно обогащенный уран с содержанием изотопа U 235 в количестве 3-5%.

Та часть реактора, в которой совершается цепная реакция, называется активной зоной. В эту зону вводят особое вещество - замедлитель нейтронов, замедляющее движение нейтронов до скорости теплового движения. В качестве замедлителя применяется простая вода (Н 2 0), тяжелая вода (D 2 0), бериллий или графит.

По типу активной зоны реакторы делят на гомогенные и гетерогенные. В гомогенных реакторах ядерное топливо и замедлитель представляют собой однородную смесь. В гетерогенных реакторах ядерное топливо располагается в замедлителе в виде стержней или пластин, называемых тепловыделяющими элементами. В судовых ядерных силовых установках применяется единственный тип - гетерогенные реакторы.

При совершении ядерной реакции около 80% энергии превращается в тепло, а 20% выделяется в виде излучений (а, в и у), а- и в-излучения особенной опасности не представляют. Но вот у-излучения и нейтронные излучения, обладающие большой проникающей способностью, вызывают вторичное излучение во многих материалах. При этом излучении в организме человека возникают тяжелые заболевания. Для предотвращения такого излучения ядерные силовые установки должны иметь надежную защиту, называемую биологической. Биологическую защиту обычно выполняют из металла, воды и бетона, она имеет значительные габариты и вес.

Наиболее мощной и технически совершенной судовой ядерной силовой установкой на гражданских судах является силовая установка на ледоколе «Ленин» - самом мощном ледоколе в мире.

Мощность четырех его турбин равна 44 000 л. с.

Главная энергетическая установка ледокола «Ленин» выполнена по следующей схеме (рис. 71). На ледоколе установлены три реактора 1 со стабилизаторами давления 2 в первом контуре. Замедлителем и теплоносителем служит обычная вода под давлением около 200 атм. Вода реактора подается в парогенераторы 3 при температуре около 325° С циркуляционными электронасосами 4. В парогенераторах получается пар второго контура под давлением 29 атм и с температурой 310° С, который приводит в действие четыре паровых турбогенератора 5. Отработавший пар проходит через конденсаторы 6 в виде конденсата и используется снова, совершая работу по замкнутому циклу.

Реакторы, парогенераторы и насосы активной зоны окружены биологической защитой из слоя воды и стальных плит толщиной 300-420 мм.



Судовые турбореактивные двигатели применяются на судах на подводных крыльях или на судах специального назначения. Часто встречающаяся схема турбореактивного двигателя приведена на рис. 72.


Рис. 71. Схема энергетической установки ледокола «Ленин»


При движении двигателя влево (по стрелке А) воздух поступает в его корпус и сжимается турбокомпрессором 1. Сжатый воздух подается в камеру горения 2, в которой сгорает поступающее одновременно топливо. Из камеры 2 продукты сгорания направляются в газовую турбину 3. В турбине газы частично расширяются, совершая этим работу для привода турбокомпрессора. Дальнейшее расширение газа происходит в сопле 4, откуда он с большой скоростью вырывается в атмосферу. Реакция вытекающей струи обеспечивает движение судна.

Парогазовая турбинная установка, работающая по циклу Вальтера, была применена на немецких подводных лодках во второй мировой войне с целью увеличения их скорости в подводном положении. Лодка с такой установкой могла в течение 5-6 ч развивать большие скорости подводного хода, доходящие до 22-25 узл.

Окислителем в этом цикле служила перекись водорода высокой (80%) концентраций, которая в присутствии катализатора разлагается в специальной камере на водяной пар и кислород, выделяя значительное количество тепла. В камере горения в кислороде сжигалось жидкое топливо с одновременным впрыскиванием туда же пресной воды. Энергия получающейся парогазовой смеси с высоким давлением и высокой температурой использовалась в парогазовой турбине. Отработавшая парогазовая смесь охлаждалась в конденсаторе, где водяной пар превращался в воду и поступал опять в систему, питательной воды, а углекислота откачивалась за борт.

Основными недостатками этих установок являлась малая дальность плавания лодок максимальными ходами, повышенная пожароопасность из-за наличия на лодке большого количества перекиси водорода, зависимость их нормальной работы от глубины погружения и высокая стоимость как самой установки, так и ее эксплуатации.

В Англии в послевоенные годы была построена подводная лодка «Эксилорер» с силовой установкой такого типа. На проведенных испытаниях было определено, что стоимость ее одного ходового часа эквивалентна стоимости 12,5 кг золота.

Вперед
Оглавление
Назад

Традиционная современная газотурбинная установка (ГТУ) - это совокупность воздушного компрессора, камеры сгорания и газовой турбины, а также вспомогательных систем, обеспечивающих ее работу. Совокупность ГТУ и электрического генератора называют газотурбинным агрегатом.

Необходимо подчеркнуть одно важное отличие ГТУ от ПТУ. В состав ПТУ не входит котел, точнее котел рассматривается как отдельный источник тепла; при таком рассмотрении котел - это «черный ящик»: в него входит питательная вода с температурой $t_{п.в}$, а выходит пар с параметрами $р_0$, $t_0$. Паротурбинная установка без котла как физического объекта работать не может. В ГТУ камера сгорания - это ее неотъемлемый элемент. В этом смысле ГТУ - самодостаточна.

Газотурбинные установки отличаются чрезвычайно большим разнообразием, пожалуй, даже большим, чем паротурбинные. Ниже рассмотрим наиболее перспективные и наиболее используемые в энергетике ГТУ простого цикла.

Принципиальная схема такой ГТУ показана на рисунке. Воздух из атмосферы поступает на вход воздушного компрессора, который представляет собой роторную турбомашину с проточной частью, состоящей из вращающихся и неподвижных решеток. Отношение давления за компрессором р b к давлению перед ним р a называется степенью сжатия воздушного компрессора и обычно обозначается как p к (p к = p b /p a ). Ротор компрессора приводится газовой турбиной. Поток сжатого воздуха подается в одну, две или более камер сгорания. При этом в большинстве случаев поток воздуха, идущий из компрессора, разделяется на два потока. Первый поток направляется к горелочным устройствам, куда также подается топливо (газ или жидкое топливо). При сжигании топлива образуются продукты сгорания топлива высокой температуры. К ним подмешивается относительно холодный воздух второго потока с тем, чтобы получить газы (их обычно называют рабочими газами) с допустимой для деталей газовой турбины температурой.

Рабочие газы с давлением р с (р с < р b из-за гидравлического сопротивления камеры сгорания) подаются в проточную часть газовой турбины, принцип действия которой ничем не отличается от принципа действия паровой турбины (отличие состоит только в том, что газовая турбина работает на продуктах сгорания топлива, а не на паре). В газовой турбине рабочие газы расширяются практически до атмосферного давления p d , поступают в выходной диффузор 14, и из него - либо сразу в дымовую трубу, либо предварительно в какой-либо теплообменник, использующий теплоту уходящих газов ГТУ.

Вследствие расширения газов в газовой турбине, последняя вырабатывает мощность. Весьма значительная ее часть (примерно половина) тратится на привод компрессора, а оставшаяся часть - на привод электрогенератора. Это и есть полезная мощность ГТУ, которая указывается при ее маркировке.

Для изображения схем ГТУ применяют условные обозначения, подоб­ные тем, которые используют для ПТУ.


Более простой ГТУ быть не может, так как она содержит минимум необходимых компонентов, обеспечивающих последовательные процессы сжатия, нагрева и расширения рабочего тела: один компрессор, одну или несколько камер сгорания, работающих в одинаковых условиях, и одну газовую турбину. Наряду с ГТУ простого цикла, существуют ГТУ сложного цикла, которые могут содержать несколько компрессоров, турбин и камер сгорания. В частности, к ГТУ этого типа относятся ГТ-100-750, строив­шиеся в СССР в 70-е годы.


Она выполнена двухвальной. На одном валу расположены компрессор высокого давления КВД и приводящая его турбина высокого давления ТВД ; этот вал имеет переменную частоту вращения. На втором валу расположены турбина низкого давления ТНД , приводящая компрессор низкого давления КНД и электрический генератор ЭГ ; поэтому этот вал имеет постоянную частоту вращения 50 с -1 . Воздух в количестве 447 кг/с поступает из атмосферы в КНД и сжимается в нем до давления примерно 430 кПа (4,3 ат) и затем подается в воздухоохладитель ВО , где охлаждается водой с 176 до 35 °С. Это позволяет уменьшить работу, затрачиваемую на сжатие воздуха в компрессоре высокого давления КВД (степень сжатия p к = 6,3). Из него воздух поступает в камеру сгорания высокого давления КСВД и продукты сгорания с температурой 750 °С направляются в ТВД . Из ТВД газы, содержащие значительное количество кислорода, поступают в камеру сгорания низкого давления КСНД , в которой сжигается дополнительное топливо, а из нее - в ТНД . Отработавшие газы с температурой 390 °С выходят либо в дымовую трубу, либо в теплообменник для использования теплоты уходящих газов.

ГТУ не отличается высокой экономичностью из-за высокой температуры уходящих газов. Усложнение схемы позволяет повысить ее экономичность, но одновременно требует увеличения капиталовложений и усложняет эксплуатацию.


На рисунке показано устройство ГТУ V94.3 фирмы Siemens. Атмосферный воздух от комплексного воздухоочистительного устройства (КВОУ) поступает в шахту 4 , а из нее - к проточной части 16 воздушного компрессора. В компрессоре происходит сжатие воздуха. Степень сжатия в типичных компрессорах составляет p к = 13-17, и таким образом давление в тракте ГТУ не превышает 1,3-1,7 МПа (13-17 ат). Это еще одно серьезное отличие ГТУ от паровой турбины, в которой давление пара больше, чем давление газов в ГТУ в 10-15 раз. Малое давление рабочей среды обусловливает малую толщину стенок корпусов и легкость их прогрева. Именно это делает ГТУ очень маневренной, т.е. способной к быстрым пускам и остановкам. Если для пуска паровой турбины в зависимости от ее начального температурного состояния требуется от 1 ч до нескольких часов, то ГТУ может быть введена в работу за 10-15 мин.

При сжатии в компрессоре воздух нагревается. Оценить этот нагрев можно по простому приближенному соотношению:

$$T_a/T_b = \pi_к^{0.25}$$

в котором Т b и Т а - абсолютные температуры воздуха за и перед компрессором. Если, например, Т а = 300 К, т.е. температура окружающего воздуха 27 °С, а p к = 16, то Т b = 600 К и, следовательно, воздух нагревается на

$$\Delta t = (600-273)-(300-273) = 300°C.$$

Таким образом, за компрессором температура воздуха составляет 300-350 °С. Воздух между стенками пламенной трубы и корпуса камеры сгорания движется к горелочному устройству, к которому подается и топливный газ. Поскольку топливо должно поступать в камеру сгорания, где давление 1,3-1,7 МПа, то давление газа должно быть большим. Для возможности регулирования его расхода в камеру сгорания требуется давление газа примерно вдвое больше, чем давление в камере. Если в подводящем газопроводе имеется такое давление, то газ подается в камеру сгорания прямо с газораспределительного пункта (ГРП). Если давление газа недостаточное, то между ГРП и камерой устанавливают дожимной газовый компрессор.

Расход топливного газа составляет всего примерно 1-1,5 % от расхода воздуха, поступающего от компрессора, поэтому создание высокоэкономичного дожимного газового компрессора представляет определенные технические трудности.

Внутри пламенной трубы 10 образуются продукты сгорания высокой температуры. После подмешивания вторичного воздуха на выходе из камеры сгорания она несколько снижается, но достигает тем не менее, в типичных современных ГТУ 1350-1400 °С.

Из камеры сгорания горячие газы поступают в проточную часть 7 газовой турбины. В ней газы расширяются до практически атмосферного давления, так как пространство за газовой турбиной сообщается либо с дымовой трубой, либо с теплообменником, гидравлическое сопротивление которого невелико.

При расширении газов в газовой турбине на ее валу создается мощность. Эта мощность частично расходуется на привод воздушного компрессора, а ее избыток - на привод ротора 1 электрогенератора. Одна из характерных особенностей ГТУ состоит в том, что компрессор требует примерно половины мощности, развиваемой газовой турбиной. Например, в создаваемой в России ГТУ мощностью 180 МВт (это и есть полезная мощность) мощность компрессора составляет 196 МВт. Это одно из принципиальных отличий ГТУ от ПТУ: в последней мощность, идущая на сжатие питательной воды даже до давления в 23,5 МПа (240 ат) составляет всего несколько процентов от мощности паровой турбины. Связано это с тем, что вода - малосжимаемая жидкость, а воздух для сжатия требует много энергии.

В первом, достаточно грубом приближении, температуру газов за турбиной можно оценить по простому соотношению, аналогичному:

$$T_c/T_d = \pi_к^{0.25}.$$

Поэтому, если $\pi_к = 16$, а температура перед турбиной Т с = 1400 °С = 1673 К, то температура за ней составляет примерно, K:

$$T_d=T_c/\pi_к^{0.25} = 1673/16^{0.25} = 836.$$

Таким образом, температура газов за ГТУ достаточно высока, и значительное количество теплоты, полученной при сжигании топлива, в буквальном смысле уходит в дымовую трубу. Поэтому при автономной работе ГТУ ее КПД невелик:для типичных ГТУ он составляет 35-36 %, т.е. существенно меньше, чем КПД ПТУ. Дело, однако, кардинальным образом изменяется при установке на «хвосте» ГТУ теплообменника (сетевого подогревателя или котла-утилизатора для комбинированного цикла).

За газовой турбиной устанавливают диффузор - плавно расширяющийся канал, при течении в котором скоростной напор газов частично преобразуется в давление. Это позволяет иметь за газовой турбиной давление меньшее, чем атмосферное, что увеличивает работоспособность 1 кг газов в турбине и, следовательно, повышает ее мощность.

Устройство воздушного компрессора. Как уже указывалось, воздушный компрессор - это турбомашина, к валу которой подводится мощность от газовой турбины; эта мощность передается воздуху, протекающему через проточную часть компрессора, вследствие чего давление воздуха повышается вплоть до давления в камере сгорания.


На рисунке показан ротор ГТУ, уложенный в опорные подшипники; на переднем плане хорошо виден ротор компрессора и статорные элементы.

Из шахты 4 воздух поступает в каналы, образованные поворотными лопатками 2 невращающегося входного направляющего аппарата (ВНА). Главная задача ВНА - сообщить потоку, движущемуся в осевом (или радиально-осевом) направлении вращательное движение. Каналы ВНА принципиально не отличаются от сопловых каналов паровой турбины: они являются конфузорными (суживающимися), и поток в них ускоряется, одновременно приобретая окружную составляющую скорости.


В современных ГТУ входной направляющий аппарат делают поворотным. Необходимость в поворотном ВНА вызвана стремлением не допустить снижения экономичности при снижении нагрузки ГТУ. Дело заключается в том, что валы компрессора и электрогенератора имеют одинаковую частоту вращения, равную частоте сети. Поэтому, если не использовать ВНА, то и количество воздуха, подаваемого компрессором в камеру сгорания, постоянно и не зависит от нагрузки турбины. А изменить мощность ГТУ можно только изменением расхода топлива в камеру сгорания. Поэтому при уменьшении расхода топлива и неизменности количества воздуха, подаваемого компрессором, снижается температура рабочих газов и перед газовой турбиной, и за ней. Это приводит к очень значительному снижению экономичности ГТУ. Поворот лопаток при снижении нагрузки вокруг оси 1 на 25 - 30° позволяет сузить проходные сечения каналов ВНА и уменьшить расход воздуха в камеру сгорания, поддерживая постоянным соотношение между расходом воздуха и топлива. Установка входного направляющего аппарата позволяет поддерживать температуру газов перед газовой турбиной и за ней постоянной в диапазоне мощности примерно 100-80 %.

На рисунке показан привод лопаток ВНА. К осям каждой лопатки крепится поворотный рычаг 2 , который через рычаг 4 связан с поворотным кольцом 1 . При необходимости изменения расхода воздуха кольцо 1 поворачивается с помощью тяг и электродвигателя с редуктором; при этом поворачиваются одновременно все рычаги 2 и соответственно лопатки ВНА 5 .

Закрученный с помощью ВНА воздух поступает в 1-ю ступень воздушного компрессора, которая состоит из двух решеток: вращающейся и неподвижной. Обе решетки в отличие от решеток турбины имеют расширяющиеся (диффузорные) каналы, т.е. площадь для прохода воздуха на входе F 1 меньше, чем F 2 на выходе.


При движении воздуха в таком канале, его скорость уменьшается (w 2 < w 1), а давление увеличивается (р 2 > р 1). К сожалению, сделать диффузорную решетку экономичной, т.е. чтобы скорость потока w 1 в максимальной степени преобразовалась бы в давление, а не в теплоту, можно только при небольшой степени сжатия р 2 /р 1 (обычно 1,2 - 1,3), что приводит к большому числу ступеней компрессора (14 - 16 при степени сжатия компрессора p к = 13 - 16).

На рисунке показано течение воздуха в компрессорной ступени. Из входного (неподвижного) поворотного соплового аппарата воздух выходит со скоростью c 1 (см. верхний треугольник скоростей), имеющий необходимую окружную закрутку (a 1 < 90°). Если расположенная за ВНА вращающаяся (рабочая) решетка имеет скорость u 1 , то относительная скорость входа в нее w 1 будет равна разности векторов c 1 и u 1 , и эта разность будет больше, чем c 1 т.е. w 1 > c 1 . При движении в канале скорость воздуха уменьшается до значения w 2 , и он выходит под углом b 2 , определяемым наклоном профилей. Однако вследствие вращения и подвода к воздуху энергии от рабочих лопаток его скорость с 2 в абсолютном движении будет больше, чем c 1 . Лопатки неподвижной решетки устанавливают так, чтобы вход воздуха в канал был безударным. Так как каналы этой решетки расширяющиеся, то скорость в ней уменьшается до значения c " 1 , а давление возрастает от р 1 до р 2 . Решетку проектируют так, чтобы c " 1 = c 1 , a a " 1 = a 1 . Поэтому во второй ступени и последующих ступенях процесс сжатия будет протекать аналогичным образом. При этом высота их решеток будет уменьшаться в соответствии с увеличившейся плотностью воздуха из-за сжатия.

Иногда направляющие лопатки нескольких первых ступеней компрессора выполняют поворотными точно так же, как и лопатки ВНА. Это позволяет расширить диапазон мощности ГТУ, при котором температура газов перед газовой турбиной и за ней остается неизменной. Соответственно повышается и экономичность. Применение нескольких поворотных направляющих аппаратов позволяет работать экономично в диапазоне 100 - 50 % мощности.

Последняя ступень компрессора устроена так же, как и предшествующие с той лишь разницей, что задачей последнего направляющего аппарата 1 является не только повышение давления, но и обеспечение осевого выхода потока воздуха. Воздух поступает в кольцевой выходной диффузор 23 , где давление повышается до максимального значения. С этим давлением воздух поступает в зону горения 9 .

Из корпуса воздушного компрессора выполняются отборы воздуха для охлаждения элементов газовой турбины. Для этого в его корпусе выполняют кольцевые камеры, сообщаемые с пространством за соответствующей ступенью. Воздух из камер отводится с помощью трубопроводов.

Кроме того, компрессор имеет так называемые антипомпажные клапаны и обводные трубопроводы 6 , перепускающие воздух из промежуточных ступеней компрессора в выходной диффузор газовой турбины при ее пуске и остановке. Это исключает неустойчивую работу компрессора при малых расходах воздуха (это явление называется помпажом), выражающуюся в интенсивной вибрации всей машины.

Создание высокоэкономичных воздушных компрессоров представляет собой чрезвычайно сложную задачу, которую, в отличие от турбин, невозможно решить только расчетом и проектированием. Поскольку мощность компрессора равна примерно мощности ГТУ, то ухудшение экономичности компрессора на 1 % приводит к снижению экономичности всей ГТУ на 2-2,5 %. Поэтому создание хорошего компрессора является одной из ключевых проблем создания ГТУ. Обычно компрессоры создаются путем моделирования (масштабирования), используя модельный компрессор, созданный путем длительной экспериментальной доводки.


Камеры сгорания ГТУ отличаются большим разнообразием. Выше показана ГТУ с двумя выносными камерами. На рисунке показана ГТУ типа 13Е мощностью 140 МВт фирмы ABB с одной выносной камерой сгорания, устройство которой аналогично устройству камеры, показанной на рисунке. Воздух из компрессора из кольцевого диффузора поступает в пространство между корпусом камеры и пламенной трубой и затем используется для горения газа и для охлаждения пламенной трубы.

Главный недостаток выносных камер сгорания - большие габариты, которые хорошо видны из рисунке. Справа от камеры размещается газовая турбина, слева - компрессор. Сверху в корпусе видны три отверстия для размещения антипомпажных клапанов и далее - привод ВНА. В современных ГТУ используют в основном встроенные камеры сгорания: кольцевые и трубчато-кольцевые.


На рисунке показана встроенная кольцевая камера сгорания. Кольцевое пространство для горения образовано внутренней 17 и наружной 11 пламенными трубами. Изнутри трубы облицованы специальными вставками 13 и 16 , имеющими термобарьерное покрытие со стороны, обращенной к пламени; с противоположной стороны вставки имеют оребрение, улучшающее их охлаждение воздухом, поступающим через кольцевые зазоры между вставками внутрь пламенной трубы. Таким образом, достигается температура пламенной трубы 750-800 °С в зоне горения. Фронтовое микрофакельное горелочное устройство камеры состоит из нескольких сотен горелок 10 , к которым подается газ из четырех коллекторов 5 -8 . Отключая коллекторы поочередно можно изменять мощность ГТУ.


Устройство горелки показано на рисунке. Из коллектора газ поступает по сверлению в штоке 3 к внутренней полости лопаток 6 завихрителя. Последний представляет собой полые радиальные прямые лопатки, заставляющие воздух, поступающий из камеры сгорания, закручиваться и вращаться вокруг оси штока. В этот вращающийся воздушный вихрь поступает природный газ из внутренней полости лопаток завихрителя 6 через мелкие отверстия 7 . При этом образуется однородная топливно-воздушная смесь, выходящая в виде закрученной струи из зоны 5 . Кольцевой вращающийся вихрь обеспечивает устойчивое горение газа.

На рисунке показана трубчато-кольцевая камера сгорания ГТЭ-180. В кольцевое пространство 24 между выходной частью воздушного компрессора и входной частью газовой турбины с помощью перфорированных конусов 3 помещают 12 пламенных труб 10 . Пламенная труба содержит многочисленные отверстия диаметром 1 мм, расположенные по кольцевым рядам на расстоянии 6 мм между ними; расстояние между рядами отверстий 23 мм. Через эти отверстия снаружи поступает «холодный» воздух, обеспечивая конвективно-пленочное охлаждение и температуру пламенной трубы не выше 850 °С. На внутреннюю поверхность пламенной трубы наносится термобарьерное покрытие толщиной 0,4 мм.


На фронтовой плите 8 пламенной трубы устанавливают горелочное устройство, состоящее из центральной пилотной горелки 6 , поджигающей топливо при пуске с помощью свечи 5 , и пяти основных модулей, один из которых показан на рисунке. Модуль позволяет сжигать газ и дизельное топливо. Газ через штуцер 1 после фильтра 6 поступает в кольцевой коллектор топливного газа 5 , а из нее - в полости, содержащие мелкие отверстия (диаметр 0,7 мм, шаг 8 мм). Через эти отверстия газ поступает внутрь кольцевого пространства. В стенках модуля выполнено шесть тангенциальных пазов 9 , через которые поступает основное количество воздуха, подаваемого для горения от воздушного компрессора. В тангенциальных пазах воздух закручивается и, таким образом, внутри полости 8 образуется вращающийся вихрь, движущийся к выходу из горелочного устройства. На периферию вихря через отверстия 3 поступает газ, смешивается с воздухом, и образовавшаяся гомогенная смесь выходит из горелки, где воспламеняется и сгорает. Продукты сгорания поступают к сопловому аппарату 1-й ступени газовой турбины.

Газовая турбина является наиболее сложным элементом ГТУ, что обусловлено в первую очередь очень высокой температурой рабочих газов, протекающих через ее проточную часть: температура газов перед турбиной 1350 °С в настоящее время считается «стандартной», и ведущие фирмы, в первую очередь General Electric, работают над освоением начальной температуры 1500 °С. Напомним, что «стандартная» начальная температура для паровых турбин составляет 540 °С, а в перспективе - температура 600-620 °С.


Стремление повысить начальную температуру связано, прежде всего, с выигрышем в экономичности, который она дает. Это хорошо видно из рисунке, обобщающего достигнутый уровень газотурбостроения: повышение начальной температуры с 1100 до 1450 °С дает увеличение абсолютного КПД с 32 до 40 %, т.е. приводит к экономии топлива в 25 %. Конечно, часть этой экономии связана не только с повышением температуры, но и с совершенствованием других элементов ГТУ, а определяющим фактором все-таки является начальная температура.

Для обеспечения длительной работы газовой турбины используют сочетание двух средств. Первое средство - применение для наиболее нагруженных деталей жаропрочных материалов, способных сопротивляться действию высоких механических нагрузок и температур (в первую очередь для сопловых и рабочих лопаток). Если для лопаток паровых турбин и некоторых других элементов применяются стали (т.е. сплавы на основе железа) с содержанием хрома 12-13 %, то для лопаток газовых турбин используют сплавы на никелевой основе (нимоники), которые способны при реально действующих механических нагрузках и необходимом сроке службы выдержать температуру 800-850 °С. Поэтому вместе с первым используют второе средство - охлаждение наиболее горячих деталей.

Для охлаждения большинства современных ГТУ используется воздух, отбираемый из различных ступеней воздушного компрессора. Уже работают ГТУ, в которых для охлаждения используется водяной пар, который является лучшим охлаждающим агентом, чем воздух. Охлаждающий воздух после нагрева в охлаждаемой детали сбрасывается в проточную часть газовой турбины. Такая система охлаждения называется открытой. Существуют замкнутые системы охлаждения, в которых нагретый в детали охлаждающий агент направляется в холодильник и затем снова возвращается для охлаждения детали. Такая система не только весьма сложна, но и требует утилизации тепла, отбираемого в холодильнике.

Система охлаждения газовой турбины - самая сложная система в ГТУ, определяющая ее срок службы. Она обеспечивает не только поддержание допустимого уровня рабочих и сопловых лопаток, но и корпусных элементов, дисков, несущих рабочие лопатки, запирание уплотнений подшипников, где циркулирует масло и т.д. Эта система чрезвычайно сильно разветвлена и организуется так, чтобы каждый охлаждаемый элемент получал охлаждающий воздух тех параметров и в том количестве, который необходим для поддержания его оптимальной температуры. Излишнее охлаждение деталей так же вредно, как и недостаточное, так как оно приводит к повышенным затратам охлаждающего воздуха, на сжатие которого в компрессоре затрачивается мощность турбины. Кроме того, повышенные расходы воздуха на охлаждение приводят к снижению температуры газов за турбиной, что очень существенно влияет на работу оборудования, установленного за ГТУ (например, паротурбинной установки, работающей в составе ПТУ). Наконец, система охлаждения должна обеспечивать не только необходимый уровень температур деталей, но и равномерность их прогрева, исключающую появление опасных температурных напряжений, циклическое действие которых приводит к появлению трещин.


На рисунке показан пример схемы охлаждения типичной газовой турбины. В прямоугольных рамках приведены значения температур газов. Перед сопловым аппаратом 1-й ступени 1 она достигает 1350 °С. За ним, т.е. перед рабочей решеткой 1-й ступени она составляет 1130 °С. Даже пе­ред рабочей лопаткой последней ступени она находится на уровне 600 °С. Газы этой температуры омывают сопловые и рабочие лопатки, и если бы они не охлаждались, то их температура равнялась бы температуре газов и срок их службы ограничивался бы несколькими часами.

Для охлаждения элементов газовой турбины используется воздух, отбираемый от компрессора в той его ступени, где его давление несколько больше, чем давление рабочих газов в той зоне газовой турбины, в которую подается воздух. Например, на охлаждение сопловых лопаток 1-й ступени охлаждающий воздух в количестве 4,5 % от расхода воздуха на входе в компрессор отбирается из выходного диффузора компрессора, а для охлаждения сопловых лопаток последней ступени и примыкающего участка корпуса - из 5-й ступени компрессора. Иногда для охлаждения самых горячих элементов газовой турбины воздух, отбираемый из выходного диффузора компрессора, направляют сначала в воздухоохладитель, где его охлаждают (обычно водой) до 180-200 °С и затем направляют на охлаждение. В этом случае воздуха для охлаждения требуется меньше, но при этом появляются затраты на воздухоохладитель, усложняется ГТУ, теряется часть теплоты, отводимой охлаждающей водой.

Газовая турбина обычно имеет 3-4 ступени, т.е. 6-8 венцов решеток, и чаще всего охлаждаются лопатки всех венцов, кроме рабочих лопаток последней ступени. Воздух для охлаждения сопловых лопаток подводится внутрь через их торцы и сбрасываются через многочисленные (600-700 отверстий диаметром 0,5-0,6 мм) отверстия, расположенные в соответствующих зонах профиля. К рабочим лопаткам охлаждающий воздух подводится через отверстия, выполненные в торцах хвостовиков.

Для того чтобы понять, как устроены охлаждаемые лопатки, необходимо хотя бы в общих чертах рассмотреть технологию их изготовления. Ввиду исключительной трудности механической обработки никелевых сплавов для получения лопаток в основном используется точное литье по выплавляемым моделям. Для его реализации сначала по специальной технологии формовки и термообработки из материалов на основе керамики изготавливают литейные стержни. Литейный стержень - это точная копия полости внутри будущей лопатки, в которую будет поступать и протекать в необходимом направлении охлаждающий воздух. Литейный стержень помещают в пресс-форму, внутренняя полость в которой полностью соответствует лопатке, которую необходимо получить. Получающееся свободное пространство между стержнем и стенкой пресс-формы запол­няют нагретой легкоплавкой массой (например, пластмассой), которая застывает. Стержень вместе с обволакивающей ее застывающей массой, повторяющей внешнюю форму лопатки, представляет собой выплавляемую модель. Ее помещают в литейную форму, к которой подают расплав нимоника. Последний выплавляет пластмассу, занимает ее место и в результате появляется литая лопатка с внутренней полостью, заполненной стержнем. Стрежень удаляют вытравливанием специальными химическими растворами. Полученные сопловые лопатки практически не требуют дополнительной механической обработки (кроме изготовления многочисленных отверстий для выхода охлаждающего воздуха). Рабочие литые лопатки требуют обработки хвостовика с помощью специального абразивного инструмента.

Описанная вкратце технология заимствована из авиационной техники, где достигнутые температуры гораздо выше, чем в стационарных паровых турбинах. Трудность освоения этих технологий связана с гораздо большими размерами лопаток для стационарных ГТУ, которые растут пропорционально расходу газов, т.е. мощности ГТУ.

Весьма перспективным представляется использование так называемых монокристаллических лопаток, которые изготавливаются из одного кристалла. Связано это с тем, что наличие границ зерен при длительном пребывании при высокой температуре приводит к ухудшению свойств металла.


Ротор газовой турбины представляет собой уникальную сборную конструкцию. Перед сборкой отдельные диски 5 компрессора и диска 7 газовой турбины облопачиваются и балансируются, изготавливаются концевые части 1 и 8 , проставочная часть 11 и центральный стяжной болт 6 . Каждый из дисков имеет два кольцевых воротника, на котором выполнены хирты (по имени изобретателя - Hirth), - строго радиальные зубья треугольного профиля. Смежные детали имеют точно такие же воротники с точно такими же хиртами. При хорошем качестве изготовления хиртового соединения обеспечивается абсолютная центровка смежных дисков (это обеспечивает радиальность хиртов) и повторяемость сборки после разборки ротора.

Ротор собирается на специальном стенде, представляющем собой лифт с кольцевой площадкой для монтажного персонала, внутри которой осуществляется сборка. Сначала собирается на резьбе концевая часть ротора 1 и стяжной стержень 6 . Стержень ставится вертикально внутри кольцевой площадки и сверху на него с помощью крана опускается диск 1-й ступени компрессора. Центровка диска и концевой части осуществляется хиртами. Перемещаясь на специальном лифте вверх, монтажный персонал диск за диском [сначала компрессора, затем проставочная часть, а затем турбины и правой концевой части 8 ] собирает весь ротор. На правый конец навинчивается гайка 9 , а на оставшуюся часть резьбовой части стяжного стержня устанавливается гидравлическое устройство, сдавливающее диски и вытягивающее стяжной стержень. После вытяжки стержня гайка 9 навинчивается до упора, и гидравлическое устройство снимается. Растянутый стержень надежно стягивает диски между собой и превращает ротор в единую жесткую конструкцию. Собранный ротор извлекают из сборочного стенда, и он готов к установке в ГТУ.

Главным преимуществом ГТУ является ее компактность. Действительно, прежде всего, в ГТУ отсутствует паровой котел, - сооружение, достигающее большой высоты и требующее для установки отдельного помещения. Связано это обстоятельство, прежде всего с высоким давлением в камере сгорания (1,2-2 МПа); в котле горение происходит при атмосферном давлении и соответственно объем образующихся горячих газов оказывается в 12-20 раз больше. Далее, в ГТУ процесс расширения газов происходит в газовой турбине, состоящей всего из 3-5 ступеней, в то время как паровая турбина, имеющая такую же мощность, состоит из 3-4 цилиндров, заключающих 25-30 ступеней. Даже с учетом и камеры сгорания, и воздушного компрессора ГТУ мощностью 150 МВт имеет длину 8-12 м, а длина паровой турбины такой же мощности при трехцилиндровом исполнении в 1,5 раза больше. При этом для паровой турбины кроме котла необходимо предусмотреть установку конденсатора с циркуляционными и конденсатными насосами, систему регенерации из 7-9 подогревателей, питательные турбонасосы (от одного до трех), деаэратор. Как следствие, ГТУ может быть установлена на бетонное основание на нулевой отметке машинного зала, а ПТУ требует рамного фундамента высотой 9-16 м с размещением паровой турбины на верхней фундаментной плите и вспомогательного оборудования - в конденсационном помещении.

Компактность ГТУ позволяет осуществить ее сборку на турбинном заводе, доставить в машинный зал железнодорожным или автодорожным транспортом для установки на простом фундаменте. Так, в частности, транспортируется ГТУ с встроенными камерами сгорания. При транспортировке ГТУ с выносными камерами последние транспортируются отдельно, но легко и быстро присоединяются с помощью фланцев к модулю компрессор - газовая турбина. Паровая турбина поставляется многочисленными узлами и деталями, монтаж как ее самой, так и многочисленного вспомогательного оборудования и связей между ними занимает в несколько раз больше времени, чем ГТУ.

ГТУ не требует охлаждающей воды. Как следствие, в ГТУ отсутствует конденсатор и система технического водоснабжения с насосной установкой и градирней (при оборотном водоснабжении). В результате все это приводит к тому, что стоимость 1 кВт установленной мощности газотурбинной электростанции значительно меньше. При этом стоимость собственно ГТУ (компрессор + камера сгорания + газовая турбина) из-за ее сложности оказывается в 3-4 раза больше, чем стоимость паровой турбины такой же мощности.

Важным преимуществом ГТУ является ее высокая маневренность, определяемая малым уровнем давления (по сравнению с давлением в паровой турбине) и, следовательно, легким прогревом и охлаждением без возникновения опасных температурных напряжений и деформаций.

Однако ГТУ имеют и существенные недостатки, из которых, прежде всего, необходимо отметить меньшую экономичность, чем у паросиловой установки. Средний КПД достаточно хороших ГТУ составляет 37-38 %, а паротурбинных энергоблоков - 42-43 %. Потолком для мощных энергетических ГТУ, как он видится в настоящее время, является КПД на уровне 41-42 %, (а может быть и выше с учетом больших резервов повышения начальной температуры). Меньшая экономичность ГТУ связана с высокой температурой уходящих газов.

Другим недостатком ГТУ является невозможность использования в них низкосортных топлив, по крайней мере, в настоящее время. Она может хорошо работать только на газе или на хорошем жидком топливе, например дизельном. Паросиловые энергоблоки могут работать на любом топливе, включая самое некачественное.

Низкая начальная стоимость ТЭС с ГТУ и одновременно сравнитель­но низкая экономичность и высокие стоимость используемого топлива и маневренность определяют основную область индивидуального использования ГТУ: в энергосистемах их следует применять как пиковые или резервные источники мощности, работающие несколько часов в сутки.

Вместе с тем ситуация кардинально изменяется при использовании теплоты уходящих газов ГТУ в теплофикационных установках или в комбинированном (парогазовом) цикле.

Газотурбинные установки (ГТУ) востребованы в промышленности, транспортной сфере, широко используются в энергетической отрасли. Это не очень сложное по конструкции оборудование, которые имеет высокий КПД и экономично в использовании.

Газовые турбины во многом схожи с двигателями, работающими на дизеле или бензине: как и в ДВС, тепловая энергия, получаемая при сгорании топлива, переходит в механическую. При этом в установках открытого типа используются продукты сгорания, в закрытых системах - газ или обычный воздух. Одинаково востребованы и те, и другие. Кроме открытых и закрытых, различают турбокомпрессорные турбины и установки со свободно-поршневыми газогенераторами.

Проще всего рассмотреть конструкцию и принцип работы газовой турбины на установке турбокомпрессорного типа, которая работает при постоянном давлении.

Конструкция газовой турбины

Газовая турбина состоит из компрессора, воздухопровода, камеры сгорания, форсунки, проточной части, неподвижных и рабочих лопаток, патрубка для отработанных газов, редуктора, гребного винта и пускового двигателя.

За запуск турбины отвечает пусковой двигатель. Он приводит в движение компрессор, который раскручивается до нужной частоты вращения. Затем:

  • компрессор захватывает воздух из атмосферы и сжимает его;
  • воздух отправляется в камеру сгорания через воздухопровод;
  • через форсунку в ту же камеру входит топливо;
  • газ и воздух смешиваются и сгорают при постоянном давлении, в результате образуются продукты сгорания;
  • продукты сгорания охлаждают с помощью воздуха, после чего они поступают в проточную часть;
  • в неподвижных лопатках смесь газов расширяется и ускоряется, затем направляется на рабочие лопатки и приводит их в движение;
  • отработанная смесь выходит из турбины, по патрубку;
  • турбина передает кинетическую энергию компрессору и гребному винту посредством редуктора.

Таким образом, газ в смеси с воздухом, сгорая, образует рабочую среду, которая, расширяясь, ускоряется и раскручивает лопатки, а за ними - и гребной винт. В последующем кинетическая энергия превращается в электричество или используется для передвижения морского судна.

Сэкономить на топливе можно, используя принцип регенерации тепла. В этом случае воздух, поступающий в турбину, согревается за счет отработанных газов. В результате установка расходует меньше топлива и происходит больше кинетической энергии. Регенератор, где подогревается воздух, одновременно служит для охлаждения отработанных газов.

Особенности ГТУ закрытого типа

Газовая турбина открытого типа забирает воздух из атмосферы и выводит отработанный газ наружу. Это не очень эффективно и опасно, если установка стоит в закрытом помещении, где работают люди. В этом случае используют ГТУ закрытого типа. Такие турбины не выпускают отработанные рабочее тело в атмосферу, а направляют его в компрессор. Оно не перемешивается с продуктами сгорания. Как результат, рабочая среда, циркулирующая в турбине, остается чистой, что увеличивает ресурс установки и сокращает количество поломок.

Однако закрытые турбины имеют слишком большие габариты. Газы, которые не выходят наружу, должны быть достаточно эффективно охлаждены. Это возможно только в больших теплообменниках. Поэтому установки используют на крупных судах, где достаточно места.

Закрытые ГТУ могут иметь и ядерный реактор. В качестве теплоносителя в них используют углекислый газ, гелий или азот. Газ нагревают в реакторе и направляют в турбину.

ГТУ и их отличия от паровых турбин и ДВС

Газовые турбины отличаются от ДВС более простой конструкцией и легкостью ремонта. Важно и то, что в них не предусмотрен кривошипно-шатунный механизм, который делает ДВС громоздким и тяжелым. Турбина легче и меньше двигателя аналогичной мощности приблизительно в два раза. Кроме того, она может работать на топливе низкого сорта.

От паровых газовые турбины отличаются небольшими габаритами и простым запуском. Обслуживать их легче, чем установки, работающие на пару.

Имеют турбины и недостатки: они не настолько экономичны по сравнению с ДВС, сильнее шумят, быстрее приходят в негодность. Впрочем, это не мешает использовать ГТУ в транспорте, промышленности и даже быту. Турбины устанавливают на морских и речных судах, используют в электростанциях, насосном оборудовании и многих других сферах. Они удобны и мобильны, поэтому применяются достаточно часто.